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Process -- a program in execution, which forms the basis of all computation 

1.15 Process Concept 

 An operating system executes a variety of programs: 

 Batch system – jobs 

 Time-shared systems – user programs or tasks 

 Textbook uses the terms job and process almost interchangeably 

 Process – a program in execution; process execution must progress in sequential fashion 

 A process includes: 

 program counter  

 stack 

 data section 

                                                        

 



 

The Process 

 Multiple parts 

 The program code, also called text section 

 Current activity including program counter, processor registers 

 Stack containing temporary data 

 Function parameters, return addresses, local variables 

 Data section containing global variables 

 Heap containing memory dynamically allocated during run time 

 Program is passive entity, process is active  

 Program becomes process when executable file loaded into memory 

 Execution of program started via GUI mouse clicks, command line entry of its name, etc 

 One program can be several processes 

 Consider multiple users executing the same program 

Process in Memory  

 

 

 



 

Process State 

 As a process executes, it changes state  

 new:  The process is being created 

 running:  Instructions are being executed 

 waiting:  The process is waiting for some event to occur 

 ready:  The process is waiting to be assigned to a processor 

 terminated:  The process has finished execution 

Diagram of Process State 

 

Process Control Block (PCB) 

Information associated with each process 

 Process state 

 Program counter 

 CPU registers 

 CPU scheduling information 

 Memory-management information 

 Accounting information 



 I/O status information 

Process Control Block (PCB) 

 

CPU Switch From Process to Process(CONTEXT-SWITCHING) 

 

 

1.16 Process Scheduling 



 Maximize CPU use, quickly switch processes onto CPU for time sharing 

 Process scheduler selects among available processes for next execution on CPU 

 Maintains scheduling queues of processes 

 Job queue – set of all processes in the system 

 Ready queue – set of all processes residing in main memory, ready and waiting to execute 

 Device queues – set of processes waiting for an I/O device 

 Processes migrate among the various queues 

Process Representation in Linux 

 Represented by the C structure  

 task_struct 

pid t pid; /* process identifier */  

long state; /* state of the process */  

unsigned int time slice /* scheduling information */ struct task struct *parent; /* this process’s parent 

*/ struct list head children; /* this process’s children */ struct files struct *files; /* list of open files */ 

struct mm struct *mm; /* address space of this pro */ 

 

Ready Queue And Various  I/O Device Queues 



 

 

Representation of Process Scheduling 

 

Schedulers 

 Long-term scheduler  (or job scheduler) – selects which processes should be brought into the ready 

queue 

 Short-term scheduler  (or CPU scheduler) – selects which process should be executed next and 

allocates CPU 

 Sometimes the only scheduler in a system 



 

 

 Short-term scheduler is invoked very frequently (milliseconds)  (must be fast) 

 Long-term scheduler is invoked very infrequently (seconds, minutes)  (may be slow) 

 The long-term scheduler controls the degree of multiprogramming 

 Processes can be described as either: 

  I/O-bound process – spends more time doing I/O than computations, many short CPU 

bursts 

 CPU-bound process – spends more time doing computations; few very long CPU bursts 

Addition of Medium Term Scheduling 

 

 

 

Context Switch 



 When CPU switches to another process, the system must save the state of the old process and load 

the saved state for the new process via a context switch. 

 Context of a process represented in the PCB 

 Context-switch time is overhead; the system does no useful work while switching 

 The more complex the OS and the PCB -> longer the context switch 

 Time dependent on hardware support 

 Some hardware provides multiple sets of registers per CPU -> multiple contexts loaded at 

once 

1.17 Operations on Processes : 

Process Creation 

 Process Creation : Parent process create children processes, which, in turn create other processes, 

forming a tree of processes 

 Generally, process identified and managed via a process identifier (pid) 

 Resource sharing 

  Parent and children share all resources 

 Children share subset of parent’s resources 

 Parent and child share no resources 

Execution 

 Parent and children execute concurrently 

 Parent waits until children terminate 

 Address space 

 Child duplicate of parent 

 Child has a program loaded into it 

 UNIX examples 

  fork system call creates new process 

 exec system call used after a fork to replace the process’ memory space with a new program 

Process Creation 



 

C Program Forking Separate Process 

 #include <sys/types.h> 

#include <studio.h> 

#include <unistd.h> 

int main() 

{ 

pid_t  pid; 

 /* fork another process */ 

 pid = fork(); 

 if (pid < 0) { /* error occurred */ 

  fprintf(stderr, "Fork Failed"); 

  return 1; 

 } 

 else if (pid == 0) { /* child process */ 

  execlp("/bin/ls", "ls", NULL); 

 } 

 else { /* parent process */ 

  /* parent will wait for the child */ 



  wait (NULL); 

  printf ("Child Complete"); 

 } 

 return 0; 

} 

A Tree of Processes on Solaris 

 

 

Process Termination 

 Process executes last statement and asks the operating system to delete it (exit) 

 Output data from child to parent (via wait) 

 Process’ resources are deallocated by operating system 

 Parent may terminate execution of children processes (abort) 

 Child has exceeded allocated resources 

 Task assigned to child is no longer required 

 If parent is exiting 

 Some operating system do not allow child to continue if its parent terminates 

 All children terminated - cascading termination 

1.18 Inter process Communication 

 Processes within a system may be independent or cooperating 



 Cooperating process can affect or be affected by other processes, including sharing data 

 Reasons for cooperating processes: 

 Information sharing 

 Computation speedup 

 Modularity 

 Convenience  

 Cooperating processes need interprocess communication (IPC) 

 Two models of IPC 

 Shared memory 

 Message passing 

Communications Models 

 

Cooperating Processes 

 Independent process cannot affect or be affected by the execution of another process 

 Cooperating process can affect or be affected by the execution of another process 

 Advantages of process cooperation 

 Information sharing  

 Computation speed-up 

 Modularity 

 Convenience 

Producer-Consumer Problem 



 Paradigm for cooperating processes, producer process produces information that is consumed by a 

consumer process 

 unbounded-buffer places no practical limit on the size of the buffer 

 bounded-buffer assumes that there is a fixed buffer size 

Bounded-Buffer 

 Shared-Memory Solution 

 Shared data 

#define BUFFER_SIZE 10 

typedef struct { 

. 

} item; 

item buffer[BUFFER_SIZE]; 

int in = 0; 

int out = 0; 

 Solution is correct, but can only use BUFFER_SIZE-1 elements 

Bounded-Buffer – Producer 

while(true)  

{ 

   /* Produce an item */ 

        while (((in = (in + 1) % BUFFER SIZE count)  == out) 

      ;   /* do nothing -- no free buffers */ 

     buffer[in] = item; 

     in = (in + 1) % BUFFER SIZE; 

     }  

Bounded Buffer – Consumer 

while (true)  

{ 

          while (in == out) 



                 ; // do nothing -- nothing to consume 

      // remove an item from the buffer 

      item = buffer[out]; 

      out = (out + 1) % BUFFER SIZE; 

 return item; 

     } 

InterprocessCommunication –  

Message Passing 

 Mechanism for processes to communicate and to synchronize their actions 

 Message system – processes communicate with each other without resorting to shared variables 

 IPC facility provides two operations: 

 send(message) – message size fixed or variable  

 receive(message) 

 If P and Q wish to communicate, they need to: 

 establish a communication link between them 

 exchange messages via send/receive 

 Implementation of communication link 

 physical (e.g., shared memory, hardware bus) 

Implementation Questions 

 How are links established? 

 Can a link be associated with more than two processes? 

 How many links can there be between every pair of communicating processes? 

 What is the capacity of a link? 

 Is the size of a message that the link can accommodate fixed or variable? 

 Is a link unidirectional or bi-directional? 

Direct Communication 

  Processes must name each other explicitly: 



 send (P, message) – send a message to process P 

 receive(Q, message) – receive a message from process Q 

 Properties of communication link 

 Links are established automatically 

 A link is associated with exactly one pair of communicating processes 

 Between each pair there exists exactly one link 

 The link may be unidirectional, but is usually bi-directional 

Indirect Communication 

 Messages are directed and received from mailboxes (also referred to as ports) 

 Each mailbox has a unique id 

 Processes can communicate only if they share a mailbox 

 Properties of communication link 

 Link established only if processes share a common mailbox 

 A link may be associated with many processes 

 Each pair of processes may share several communication links 

 Link may be unidirectional or bi-directional 

 Operations 

 create a new mailbox 

 send and receive messages through mailbox 

 destroy a mailbox 

 Primitives are defined as: 

 send(A, message) – send a message to mailbox A 

 receive(A, message) – receive a message from mailbox A 

 Mailbox sharing 

 P1, P2, and P3 share mailbox A 

 P1, sends; P2 and P3 receive 

 Who gets the message? 



 Solutions 

 Allow a link to be associated with at most two processes 

 Allow only one process at a time to execute a receive operation 

 Allow the system to select arbitrarily the receiver.  Sender is notified who the receiver was. 

Synchronization 

 Message passing may be either blocking or non-blocking 

 Blocking is considered synchronous 

 Blocking send has the sender block until the message is received 

 Blocking receive has the receiver block until a message is available 

 Non-blocking is considered asynchronous 

 Non-blocking send has the sender send the message and continue 

 Non-blocking receive has the receiver receive a valid message or null 

Buffering 

 Queue of messages attached to the link; implemented in one of three ways 

 1. Zero capacity – 0 messages 

Sender must wait for receiver (rendezvous) 

 2.Bounded capacity – finite length of n messages 

Sender must wait if link full 

  3.Unbounded capacity – infinite length  

Sender never waits 

1.19 Examples of IPC Systems - POSIX 

 POSIX Shared Memory 

 Process first creates shared memory segment 

segment id = shmget(IPC PRIVATE, size, S IRUSR | S IWUSR); 

 Process wanting access to that shared memory must attach to it 

shared memory = (char *) shmat(id, NULL, 0); 

 Now the process could write to the shared memory 

sprintf(shared memory, "Writing to shared memory"); 



 When done a process can detach the shared memory from its address space 

shmdt(shared memory); 

Examples of IPC Systems – Mach 

Mach communication is message based 

  Even system calls are messages 

 Each task gets two mailboxes at creation- Kernel and Notify 

 Only three system calls needed for message transfer 

msg_send(), msg_receive(), msg_rpc() 

 Mailboxes needed for commuication, created via 

                   port_allocate()  

Examples of IPC Systems – Windows XP  

 Message-passing centric via local procedure call (LPC) facility 

  Only works between processes on the same system 

 Uses ports (like mailboxes) to establish and maintain communication channels 

 Communication works as follows: 

 The client opens a handle to the subsystem’s connection port object. 

 The client sends a connection request. 

 The server creates two private communication ports and returns the handle to one 

of them to the client. 

 The client and server use the corresponding port handle to send messages or 

callbacks and to listen for replies.  

Local Procedure Calls in Windows XP 



 

 

1.20 Communications in Client-Server Systems 

 Sockets 

 Remote Procedure Calls 

 Pipes 

 Remote Method Invocation (Java) 

Sockets 

 A socket is defined as an endpoint for communication 

 Concatenation of IP address and port 

 The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8 

 Communication consists between a pair of sockets 

 

 

 

Socket Communication 



 

Remote Procedure Calls 

 Remote procedure call (RPC) abstracts procedure calls between processes on networked systems 

 Stubs – client-side proxy for the actual procedure on the server 

 The client-side stub locates the server and marshalls the parameters 

 The server-side stub receives this message, unpacks the marshalled parameters, and performs the 

procedure on the server 

Execution of RPC 

 

 

Pipes 

 Acts as a conduit allowing two processes to communicate 



 Issues 

 Is communication unidirectional or bidirectional? 

 In the case of two-way communication, is it half or full-duplex? 

 Must there exist a relationship (i.e. parent-child) between the communicating processes? 

 Can the pipes be used over a network? 

Ordinary Pipes 

 Ordinary Pipes allow communication in standard producer-consumer style 

 Producer writes to one end (the write-end of the pipe) 

 Consumer reads from the other end (the read-end of the pipe) 

 Ordinary pipes are therefore unidirectional 

 Require parent-child relationship between communicating processes 

Ordinary Pipes 

 

 

Named Pipes  

 Named Pipes are more powerful than ordinary pipes 
 Communication is bidirectional 
 No parent-child relationship is necessary between the communicating processes 
 Several processes can use the named pipe for communication 
 Provided on both UNIX and Windows systems 

 



CHAPTER-4   : Threads 

4.1 Overview 

 A thread is a basic unit of CPU utilization, consisting of a program counter, a 
stack, and a set of registers, ( and a thread ID. ) 

 Traditional ( heavyweight ) processes have a single thread of control - There is 
one program counter, and one sequence of instructions that can be carried out 
at any given time. 

 As shown in Figure 4.1, multi-threaded applications have multiple threads 
within a single process, each having their own program counter, stack and set 
of registers, but sharing common code, data, and certain structures such as 
open files. 

 
Figure 4.1 - Single-threaded and multithreaded processes 

4.1.1 Motivation 

 Threads are very useful in modern programming whenever a process has 
multiple tasks to perform independently of the others. 

 This is particularly true when one of the tasks may block, and it is desired to 
allow the other tasks to proceed without blocking. 

 For example in a word processor, a background thread may check spelling and 
grammar while a foreground thread processes user input ( keystrokes ), while 



yet a third thread loads images from the hard drive, and a fourth does periodic 
automatic backups of the file being edited. 

 Another example is a web server - Multiple threads allow for multiple requests 
to be satisfied simultaneously, without having to service requests sequentially 
or to fork off separate processes for every incoming request. ( The latter is how 
this sort of thing was done before the concept of threads was developed. A 
daemon would listen at a port, fork off a child for every incoming request to be 
processed, and then go back to listening to the port. ) 

 
Figure 4.2 - Multithreaded server architecture 

4.1.2 Benefits 

 There are four major categories of benefits to multi-threading: 
1. Responsiveness - One thread may provide rapid response while other 

threads are blocked or slowed down doing intensive calculations. 
2. Resource sharing - By default threads share common code, data, and 

other resources, which allows multiple tasks to be performed 
simultaneously in a single address space. 

3. Economy - Creating and managing threads ( and context switches 
between them ) is much faster than performing the same tasks for 
processes. 

4. Scalability, i.e. Utilization of multiprocessor architectures - A single 
threaded process can only run on one CPU, no matter how many may be 
available, whereas the execution of a multi-threaded application may be 
split amongst available processors. ( Note that single threaded processes 
can still benefit from multi-processor architectures when there are 
multiple processes contending for the CPU, i.e. when the load average is 
above some certain threshold. ) 



4.2  Multicore  Programming 

 A recent trend in computer architecture is to produce chips with multiple cores, 
or CPUs on a single chip. 

 A multi-threaded application running on a traditional single-core chip would 
have to interleave the threads, as shown in Figure 4.3. On a multi-core chip, 
however, the threads could be spread across the available cores, allowing true 
parallel processing, as shown in Figure 4.4. 

 
Figure 4.3 - Concurrent execution on a single-core system. 

 
Figure 4.4 - Parallel execution on a multicore system 

 For operating systems, multi-core chips require new scheduling algorithms to 
make better use of the multiple cores available. 

 As multi-threading becomes more pervasive and more important ( thousands 
instead of tens of threads ), CPUs have been developed to support more 
simultaneous threads per core in hardware. 

4.2.1 Programming Challenges  

 For application programmers, there are five areas where multi-core chips 
present new challenges: 

1. Identifying tasks - Examining applications to find activities that can be 
performed concurrently. 

2. Balance - Finding tasks to run concurrently that provide equal value. I.e. 
don't waste a thread on trivial tasks. 

3. Data splitting - To prevent the threads from interfering with one 
another. 



4. Data dependency - If one task is dependent upon the results of another, 
then the tasks need to be synchronized to assure access in the proper 
order. 

5. Testing and debugging - Inherently more difficult in parallel processing 
situations, as the race conditions become much more complex and 
difficult to identify. 

4.2.2 Types of Parallelism  

In theory there are two different ways to parallelize the workload: 

1. Data parallelism divides the data up amongst multiple cores ( threads ), and 
performs the same task on each subset of the data. For example dividing a large 
image up into pieces and performing the same digital image processing on each 
piece on different cores. 

2. Task parallelism divides the different tasks to be performed among the 
different cores and performs them simultaneously. 

In practice no program is ever divided up solely by one or the other of these, but instead 

by some sort of hybrid combination. 

4.3 Multithreading Models 

 There are two types of threads to be managed in a modern system: User 
threads and kernel threads. 

 User threads are supported above the kernel, without kernel support. These are 
the threads that application programmers would put into their programs. 

 Kernel threads are supported within the kernel of the OS itself. All modern OS 
support kernel level threads, allowing the kernel to perform multiple 
simultaneous tasks and/or to service multiple kernel system calls 
simultaneously. 

 In a specific implementation, the user threads must be mapped to kernel 
threads, using one of the following strategies. 

4.3.1 Many-To-One Model 

 In the many-to-one model, many user-level threads are all mapped onto a single 
kernel thread. 

 Thread management is handled by the thread library in user space, which is very 
efficient. 

 However, if a blocking system call is made, then the entire process blocks, even 
if the other user threads would otherwise be able to continue. 



 Because a single kernel thread can operate only on a single CPU, the many-to-
one model does not allow individual processes to be split across multiple CPUs. 

 Green threads for Solaris and GNU Portable Threads implement the many-to-
one model in the past, but few systems continue to do so today. 

 
Figure 4.5 - Many-to-one model 

4.3.2 One-To-One Model 

 The one-to-one model creates a separate kernel thread to handle each user 
thread. 

 One-to-one model overcomes the problems listed above involving blocking 
system calls and the splitting of processes across multiple CPUs. 

 However the overhead of managing the one-to-one model is more significant, 
involving more overhead and slowing down the system. 

 Most implementations of this model place a limit on how many threads can be 
created. 

 Linux and Windows from 95 to XP implement the one-to-one model for threads. 



 
Figure 4.6 - One-to-one model 

4.3.3 Many-To-Many Model 

 The many-to-many model multiplexes any number of user threads onto an 
equal or smaller number of kernel threads, combining the best features of the 
one-to-one and many-to-one models. 

 Users have no restrictions on the number of threads created. 
 Blocking kernel system calls do not block the entire process. 
 Processes can be split across multiple processors. 
 Individual processes may be allocated variable numbers of kernel threads, 

depending on the number of CPUs present and other factors. 

 
Figure 4.7 - Many-to-many model 

 



 One popular variation of the many-to-many model is the two-tier model, which 
allows either many-to-many or one-to-one operation. 

 IRIX, HP-UX, and Tru64 UNIX use the two-tier model, as did Solaris prior to 
Solaris 9. 

 
Figure 4.8 - Two-level model 

4.4 Thread Libraries 

 Thread libraries provide programmers with an API for creating and managing 
threads. 

 Thread libraries may be implemented either in user space or in kernel space. 
The former involves API functions implemented solely within user space, with 
no kernel support. The latter involves system calls, and requires a kernel with 
thread library support. 

 There are three main thread libraries in use today: 
1. POSIX Pthreads - may be provided as either a user or kernel library, as 

an extension to the POSIX standard. 
2. Win32 threads - provided as a kernel-level library on Windows systems. 
3. Java threads - Since Java generally runs on a Java Virtual Machine, the 

implementation of threads is based upon whatever OS and hardware the 
JVM is running on, i.e. either Pthreads or Win32 threads depending on 
the system. 



 The following sections will demonstrate the use of threads in all three systems 
for calculating the sum of integers from 0 to N in a separate thread, and storing 
the result in a variable "sum". 

4.4.1  Pthreads 

 The POSIX standard (IEEE 1003.1c ) defines the specification for Pthreads, not 
the implementation. 

 Pthreads are available on Solaris, Linux, Mac OSX, Tru64, and via public domain 
shareware for Windows. 

 Global variables are shared amongst all threads. 
 One thread can wait for the others to rejoin before continuing. 
 Pthreads begin execution in a specified function, in this example the runner( ) 

function: 



 
Figure 4.9 



 
 

4.4.2 Windows Threads 

 Similar to Pthreads. Examine the code example to see the differences, which 
are mostly syntactic & nomenclature: 



 
Figure 4.11 



4.4.3 Java Threads 

 ALL Java programs use Threads - even "common" single-threaded ones. 
 The creation of new Threads requires Objects that implement the Runnable 

Interface, which means they contain a method "public void run ( )”. Any 
descendant of the Thread class will naturally contain such a method. (In practice 
the run ( ) method must be overridden / provided for the thread to have any 
practical functionality). 

 Creating a Thread Object does not start the thread running - To do that the 
program must call the Thread's "start ( )" method. Start ( ) allocates and 
initializes memory for the Thread, and then calls the run ( ) method. 
(Programmers do not call run ( ) directly.  

 Because Java does not support global variables, Threads must be passed a 
reference to a shared Object in order to share data, in this example the "Sum" 
Object. 

 Note that the JVM runs on top of a native OS, and that the JVM specification 
does not specify what model to use for mapping Java threads to kernel threads. 
This decision is JVM implementation dependant, and may be one-to-one, many-
to-many, or many to one. (On a UNIX system the JVM normally uses PThreads 
and on a Windows system it normally uses windows threads. ) 



 
Figure 4.12 



4.5 Implicit Threading  

Shifts the burden of addressing the programming challenges outlined in section 4.2.1 

above from the application programmer to the compiler and run-time libraries. 

4.5.1 Thread Pools 

 Creating new threads every time one is needed and then deleting it when it is 
done can be inefficient, and can also lead to a very large (unlimited) number of 
threads being created. 

 An alternative solution is to create a number of threads when the process first 
starts, and put those threads into a thread pool. 

o Threads are allocated from the pool as needed, and returned to the pool 
when no longer needed. 

o When no threads are available in the pool, the process may have to wait 
until one becomes available. 

 The (maximum) number of threads available in a thread pool may be 
determined by adjustable parameters, possibly dynamically in response to 
changing system loads. 

 Win32 provides thread pools through the "Pool Function" function. Java also 
provides support for thread pools through the java.util.concurrent package, and 
Apple supports thread pools under the Grand Central Dispatch architecture. 

4.5.2 OpenMP 

 OpenMP is a set of compiler directives available for C, C++, or FORTRAN 
programs that instruct the compiler to automatically generate parallel code 
where appropriate. 

 For example, the directive: 

      #pragma omp parallel  

       { 

             /* some parallel code here */ 

       } 

Would cause the compiler to create as many threads as the machine has cores available 

( e.g. 4 on a quad-core machine ), and to run the parallel block of code, ( known as 

a parallel region ) on each of the threads. 

 Another sample directive is "#pragma omp parallel for", which causes the for 
loop immediately following it to be parallelized, dividing the iterations up 
amongst the available cores. 



4.5.3 Grand Central Dispatch, GCD 

 GCD is an extension to C and C++ available on Apple's OSX and iOS operating 
systems to support parallelism. 

 Similar to OpenMP, users of GCD define blocks of code to be executed either 
serially or in parallel by placing a carat just before an opening curly brace, i.e.  

{printf( "I am a block.\n" ); } 

 GCD schedules blocks by placing them on one of several dispatch queues. 
o Blocks placed on a serial queue are removed one by one. The next block 

cannot be removed for scheduling until the previous block has 
completed. 

o There are three concurrent queues, corresponding roughly to low, 
medium, or high priority. Blocks are also removed from these queues one 
by one, but several may be removed and dispatched without waiting for 
others to finish first, depending on the availability of threads. 

 Internally GCD manages a pool of POSIX threads which may fluctuate in size 
depending on load conditions. 

4.5.4 Other Approaches 

There are several other approaches available, including Microsoft's Threading Building 

Blocks ( TBB) and other products, and Java's util.concurrent package. 

4.6 Threading Issues 

4.6.1 The fork ( ) and exec ( ) System Calls 

 Q: If one thread forks, is the entire process copied, or is the new process single-
threaded? 

 A: System dependant. 
 A: If the new process execs right away, there is no need to copy all the other 

threads. If it doesn't, then the entire process should be copied. 
 A: Many versions of UNIX provide multiple versions of the fork call for this 

purpose. 

4.6.2 Signal Handling 

 Q: When a multi-threaded process receives a signal, to what thread should that 
signal be delivered? 

 A: There are four major options: 
1. Deliver the signal to the thread to which the signal applies. 
2. Deliver the signal to every thread in the process. 



3. Deliver the signal to certain threads in the process. 
4. Assign a specific thread to receive all signals in a process. 

 The best choice may depend on which specific signal is involved. 
 UNIX allows individual threads to indicate which signals they are accepting and 

which they are ignoring. However the signal can only be delivered to one 
thread, which is generally the first thread that is accepting that particular signal. 

 UNIX provides two separate system calls, kill (pid, signal) and pthread_kill (tid, 
signal), for delivering signals to processes or specific threads respectively. 

 Windows does not support signals, but they can be emulated using 
Asynchronous Procedure Calls ( APCs ). APCs are delivered to specific threads, 
not processes. 

4.6.3 Thread Cancellation 

 Threads that are no longer needed may be cancelled by another thread in one 
of two ways: 

1. Asynchronous Cancellation cancels the thread immediately. 
2. Deferred Cancellation sets a flag indicating the thread should cancel 

itself when it is convenient. It is then up to the cancelled thread to check 
this flag periodically and exit nicely when it sees the flag set. 

 (Shared) resource allocation and inter-thread data transfers can be problematic 
with asynchronous cancellation. 

4.6.4 Thread-Local Storage (was 4.4.5 Thread-Specific Data ) 

 Most data is shared among threads, and this is one of the major benefits of 
using threads in the first place. 

 However sometimes threads need thread-specific data also. 
 Most major thread libraries ( PThreads, Win32, Java ) provide support for 

thread-specific data, known as thread-local storage or TLS. Note that this is 
more like static data than local variables, because it does not cease to exist 
when the function ends. 

4.6.5 Scheduler Activations 

 Many implementations of threads provide a virtual processor as an interface 
between the user thread and the kernel thread, particularly for the many-to-
many or two-tier models. 

 This virtual processor is known as a "Lightweight Process", LWP. 
o There is a one-to-one correspondence between LWPs and kernel 

threads. 
o The number of kernel threads available, ( and hence the number of LWPs 

) may change dynamically. 



o The application ( user level thread library ) maps user threads onto 
available LWPs. 

o Kernel threads are scheduled onto the real processor(s) by the OS. 
o The kernel communicates to the user-level thread library when certain 

events occur (such as a thread about to block ) via an upcall, which is 
handled in the thread library by an upcall handler. The upcall also 
provides a new LWP for the upcall handler to run on, which it can then 
use to reschedule the user thread that is about to become blocked. The 
OS will also issue up calls when a thread becomes unblocked, so the 
thread library can make appropriate adjustments. 

 If the kernel thread blocks, then the LWP blocks, which blocks the user thread. 
 Ideally there should be at least as many LWPs available as there could be 

concurrently blocked kernel threads. Otherwise if all LWPs are blocked, then 
user threads will have to wait for one to become available. 

 
Figure 4.13 - Lightweight process ( LWP ) 

4.7 Operating-System Examples  

4.7.1 Windows XP Threads 

 The Win32 API thread library supports the one-to-one thread model 
 Win32 also provides the fiber library, which supports the many-to-many model. 
 Win32 thread components include: 

o Thread ID 
o Registers 
o A user stack used in user mode, and a kernel stack used in kernel mode. 
o A private storage area used by various run-time libraries and dynamic link 

libraries ( DLLs ). 



 The key data structures for Windows threads are the ETHREAD ( executive 
thread block ), KTHREAD ( kernel thread block ), and the TEB ( thread 
environment block ). The ETHREAD and KTHREAD structures exist entirely 
within kernel space, and hence are only accessible by the kernel, whereas the 
TEB lies within user space, as illustrated in Figure 4.10: 

 
Figure 4.14 - Data structures of a Windows thread 

4.7.2 Linux Threads 

 Linux does not distinguish between processes and threads - It uses the more 
generic term "tasks". 



 The traditional fork ( ) system call completely duplicates a process ( task ), as 
described earlier. 

 An alternative system call, clone( ) allows for varying degrees of sharing 
between the parent and child tasks, controlled by flags such as those shown in 
the following table: 

  

flag Meaning 

CLONE_FS File-system information is shared 

CLONE_VM The same memory space is shared 

CLONE_SIGHAND Signal handlers are shared 

CLONE_FILES The set of open files is shared 

 Calling clone( )with no flags set is equivalent to fork( ). Calling clone( ) with 
CLONE_FS, CLONE_VM, CLONE_SIGHAND, and CLONE_FILES is equivalent to 
creating a thread, as all of these data structures will be shared. 

 Linux implements this using a structure task_struct, which essentially provides 
a level of indirection to task resources. When the flags are not set, then the 
resources pointed to by the structure are copied, but if the flags are set, then 
only the pointers to the resources are copied, and hence the resources are 
shared. ( Think of a deep copy versus a shallow copy in OO programming. ) 

 Several distributions of Linux now support the NPTL ( Native POXIS Thread 
Library ) 

o POSIX compliant. 
o Support for SMP ( symmetric multiprocessing ), NUMA ( non-uniform 

memory access ), and multicore processors. 
o Support for hundreds to thousands of threads. 

 

 

 

 



CHAPTER-5   : Process Synchronization 

5.1 Background 

 Recall that back in Chapter 3 we looked at cooperating processes ( those that 
can effect or be effected by other simultaneously running processes ), and as 
an example, we used the producer-consumer cooperating processes: 

Producer code from chapter 3: 

item nextProduced; 

while( true ) { 

/* Produce an item and store it in nextProduced */ 

nextProduced = makeNewItem( . . . );  

 

/* Wait for space to become available */  

while( ( ( in + 1 ) % BUFFER_SIZE ) == out ) 

      ; /* Do nothing */ 

 

/* And then store the item and repeat the loop. */  

buffer[ in ] = nextProduced; 

in = ( in + 1 ) % BUFFER_SIZE; 

} 

Consumer code from chapter 3: 

item nextConsumed; 

while( true ) { 

/* Wait for an item to become available */  

while( in == out ) 

      ; /* Do nothing */ 

/* Get the next available item */  

nextConsumed = buffer[ out ]; 

out = ( out + 1 ) % BUFFER_SIZE; 

 

/* Consume the item in nextConsumed 

     ( Do something with it ) */ 



} 

 The only problem with the above code is that the maximum number of items 
which can be placed into the buffer is BUFFER_SIZE - 1. One slot is unavailable 
because there always has to be a gap between the producer and the consumer. 

 We could try to overcome this deficiency by introducing a counter variable, as 
shown in the following code segments: 

 

 Unfortunately we have now introduced a new problem, because both the 
producer and the consumer are adjusting the value of the variable counter, 
which can lead to a condition known as a race condition. In this condition a 
piece of code may or may not work correctly, depending on which of two 
simultaneous processes executes first, and more importantly if one of the 
processes gets interrupted such that the other process runs between important 
steps of the first process. ( Bank balance example discussed in class. ) 



 The particular problem above comes from the producer executing "counter++" 
at the same time the consumer is executing "counter--". If one process gets part 
way through making the update and then the other process butts in, the value 
of counter can get left in an incorrect state. 

 But, you might say, "Each of those are single instructions - How can they get 
interrupted halfway through?" The answer is that although they are single 
instructions in C++, they are actually three steps each at the hardware level: (1) 
Fetch counter from memory into a register, (2) increment or decrement the 
register, and (3) Store the new value of counter back to memory. If the 
instructions from the two processes get interleaved, there could be serious 
problems, such as illustrated by the following: 

 

 Exercise: What would be the resulting value of counter if the order of 
statements T4 and T5 were reversed? ( What should the value of counter be 
after one producer and one consumer, assuming the original value was 5? ) 

 Note that race conditions are notoriously difficult to identify and debug, 
because by their very nature they only occur on rare occasions, and only when 
the timing is just exactly right. ( or wrong! :-) ) Race conditions are also very 
difficult to reproduce. :-( 



 Obviously the solution is to only allow one process at a time to manipulate the 
value "counter". This is a very common occurrence among cooperating 
processes, so lets look at some ways in which this is done, as well as some classic 
problems in this area. 

A situation where several processes access and manipulate the same data 
concurrently and the outcome of the execution depends on the particular order  in 
which the access takes place, is called a race condition 

To guard against the race condition , it is to be ensured that only one process at a time 
can be manipulating the variable counter and processes be synchronized in some 
manner. 

 

5.2 The Critical-Section Problem 

 The producer-consumer problem described above is a specific example of a 
more general situation known as the critical section problem. The general idea 
is that in a number of cooperating processes, each has a critical section of code, 
with the following conditions and terminologies: 

o Only one process in the group can be allowed to execute in their critical 
section at any one time. If one process is already executing their critical 
section and another process wishes to do so, then the second process 
must be made to wait until the first process has completed their critical 
section work. 

o The code preceding the critical section, and which controls access to the 
critical section, is termed the entry section. It acts like a carefully 
controlled locking door. 

o The code following the critical section is termed the exit section. It 
generally releases the lock on someone else's door, or at least lets the 
world know that they are no longer in their critical section. 

o The rest of the code not included in either the critical section or the entry 
or exit sections is termed the remainder section. 



 
Figure 5.1 - General structure of a typical process Pi 

In a system of processes (P0, P1, P2…. Pn), each process has a segment of code 

called a critical section, in which the process may be changing common 

variables, updating a table, writing a file etc. 

When one process is executing in its critical section, no other process is to be 

allowed to execute in its critical section 

Solution is to design a protocol that the processes can use to cooperate. 

Implemented by following sections: 

– Entry section- includes implementation of code to grant permission to a 

process to  enter its critical section. 

– Exit section- follows the critical section. 

– Remainder Section- remaining code of the protocol 

 A solution to the critical section problem must satisfy the following three 
conditions: 

1. Mutual Exclusion - Only one process at a time can be executing in their 
critical section. 

2. Progress - If no process is currently executing in their critical section, and 
one or more processes want to execute their critical section, then only 
the processes not in their remainder sections can participate in the 
decision, and the decision cannot be postponed indefinitely. ( I.e. 
processes cannot be blocked forever waiting to get into their critical 
sections. ) 

3. Bounded Waiting - There exists a limit as to how many other processes 
can get into their critical sections after a process requests entry into their 



critical section and before that request is granted. ( I.e. a process 
requesting entry into their critical section will get a turn eventually, and 
there is a limit as to how many other processes get to go first. ) 

 We assume that all processes proceed at a non-zero speed, but no assumptions 
can be made regarding the relative speed of one process versus another. 

 Kernel processes can also be subject to race conditions, which can be especially 
problematic when updating commonly shared kernel data structures such as 
open file tables or virtual memory management. Accordingly kernels can take 
on one of two forms: 

o Non-preemptive kernels do not allow processes to be interrupted while 
in kernel mode. This eliminates the possibility of kernel-mode race 
conditions, but requires kernel mode operations to complete very 
quickly, and can be problematic for real-time systems, because timing 
cannot be guaranteed. 

o Preemptive kernels allow for real-time operations, but must be carefully 
written to avoid race conditions. This can be especially tricky on SMP 
systems, in which multiple kernel processes may be running 
simultaneously on different processors. 

Non-preemptive kernels include Windows XP, 2000, traditional UNIX, and Linux prior 
to 2.6; Preemptive kernels include Linux 2.6 and later, and some commercial UNIXes 
such as Solaris and IRIX.  

5.3 Peterson's Solution 

 Peterson's Solution is a classic software-based solution to the critical section 
problem. It is unfortunately not guaranteed to work on modern hardware, due 
to vagaries of load and store operations, but it illustrates a number of important 
concepts. 

 Peterson's solution is based on two processes, P0 and P1, which alternate 
between their critical sections and remainder sections. For convenience of 
discussion, "this" process is Pi, and the "other" process is Pj. ( I.e. j = 1 - i ) 

 Peterson's solution requires two shared data items: 
o int turn - Indicates whose turn it is to enter into the critical section. If 

turn = = i, then process i is allowed into their critical section. 
o boolean flag[ 2 ] - Indicates when a process wants to enter into their 

critical section. When process i wants to enter their critical section, it sets 
flag[ i ] to true. 

 In the following diagram, the entry and exit sections are enclosed in boxes. 
o In the entry section, process i first raises a flag indicating a desire to enter 

the critical section. 
o Then turn is set to j to allow the other process to enter their critical 

section if process j so desires. 



o The while loop is a busy loop ( notice the semicolon at the end ), which 
makes process i wait as long as process j has the turn and wants to enter 
the critical section. 

o Process i lowers the flag[ i ] in the exit section, allowing process j to 
continue if it has been waiting. 

 

 

 
Figure 5.2 - The structure of process Pi in Peterson's solution. 

 

 To prove that the solution is correct, we must examine the three conditions 
listed above: 

1. Mutual exclusion - If one process is executing their critical section when 
the other wishes to do so, the second process will become blocked by 
the flag of the first process. If both processes attempt to enter at the 
same time, the last process to execute "turn = j" will be blocked. 

2. Progress - Each process can only be blocked at the while if the other 
process wants to use the critical section ( flag[ j ] = = true ), AND it is the 
other process's turn to use the critical section ( turn = = j ). If both of those 
conditions are true, then the other process ( j ) will be allowed to enter 
the critical section, and upon exiting the critical section, will set flag[ j ] 



to false, releasing process i. The shared variable turn assures that only 
one process at a time can be blocked, and the flag variable allows one 
process to release the other when exiting their critical section. 

3. Bounded Waiting - As each process enters their entry section, they set 
the turn variable to be the other processes turn. Since no process ever 
sets it back to their own turn, this ensures that each process will have to 
let the other process go first at most one time before it becomes their 
turn again. 

 Note that the instruction "turn = j" is atomic, that is it is a single machine 
instruction which cannot be interrupted. 

Properties followed by this solution: 

1. Mutual Exclusion: This condition is followed, explained in above example. 
2. Progress: It is definitely followed as whichever process needs critical section, 

will make the INTERESTED value as true. 
3. Bounded Waiting: This property is also followed as whichever process can make 

the TURN variable first, will get into critical section. 
4. Platform Neutrality: yes because the solution is in user mode. 

Disadvantage: 

1. This solution works for 2 processes, but this solution is best scheme in user 
mode for critical section. 

2. This is also a busy waiting solution so CPU time is wasted. And because of that 
“SPIN LOCK” problem can come. And this problem can come in any of the busy 
waiting solution. 

 

5.4 Synchronization Hardware 

 To generalize the solution(s) expressed above, each process when entering 
their critical section must set some sort of lock, to prevent other processes from 
entering their critical sections simultaneously, and must release the lock when 
exiting their critical section, to allow other processes to proceed. Obviously it 
must be possible to attain the lock only when no other process has already set 
a lock. Specific implementations of this general procedure can get quite 
complicated, and may include hardware solutions as outlined in this section. 

 One simple solution to the critical section problem is to simply prevent a 
process from being interrupted while in their critical section, which is the 
approach taken by non preemptive kernels. Unfortunately this does not work 



well in multiprocessor environments, due to the difficulties in disabling and the 
re-enabling interrupts on all processors. There is also a question as to how this 
approach affects timing if the clock interrupt is disabled. 

 Another approach is for hardware to provide certain atomic operations. These 
operations are guaranteed to operate as a single instruction, without 
interruption. One such operation is the "Test and Set", which simultaneously 
sets a boolean lock variable and returns its previous value, as shown in Figures 
5.3 and 5.4: 

 
Figures 5.3 and 5.4 illustrate "test_and_set( )" function 

 Another variation on the test-and-set is an atomic swap of two booleans, as 
shown in Figures 5.5 and 5.6: 



 

 The above examples satisfy the mutual exclusion requirement, but 
unfortunately do not guarantee bounded waiting. If there are multiple 
processes trying to get into their critical sections, there is no guarantee of what 
order they will enter, and any one process could have the bad luck to wait 
forever until they got their turn in the critical section. ( Since there is no 
guarantee as to the relative rates of the processes, a very fast process could 
theoretically release the lock, whip through their remainder section, and re-lock 
the lock before a slower process got a chance. As more and more processes are 
involved vying for the same resource, the odds of a slow process getting locked 
out completely increase. ) 

 Figure 5.7 illustrates a solution using test-and-set that does satisfy this 
requirement, using two shared data structures, boolean 



lock and boolean waiting[ N ], where N is the number of processes 
in contention for critical sections: 

 
Figure 5.7 Bounded-waiting mutual exclusion with TestAndSet( ). 

 The key feature of the above algorithm is that a process blocks on the AND of 
the critical section being locked and that this process is in the waiting state. 
When exiting a critical section, the exiting process does not just unlock the 
critical section and let the other processes have a free-for-all trying to get in. 
Rather it first looks in an orderly progression ( starting with the next process on 
the list ) for a process that has been waiting, and if it finds one, then it releases 
that particular process from its waiting state, without unlocking the critical 
section, thereby allowing a specific process into the critical section while 
continuing to block all the others. Only if there are no other processes currently 
waiting is the general lock removed, allowing the next process to come along 
access to the critical section. 



 Unfortunately, hardware level locks are especially difficult to implement in 
multi-processor architectures. Discussion of such issues is left to books on 
advanced computer architecture. 

5.5 Mutex Locks 

 The hardware solutions presented above are often difficult for ordinary 
programmers to access, particularly on multi-processor machines, and 
particularly because they are often platform-dependent. 

 Therefore most systems offer a software API equivalent called mutex locks or 
simply mutexes. ( For mutual exclusion ) 

 The terminology when using mutexes is to acquire a lock prior to entering a 
critical section, and to release it when exiting, as shown in Figure 5.8: 

 
Figure 5.8 - Solution to the critical-section problem using mutex locks 

 Just as with hardware locks, the acquire step will block the process if the lock is 
in use by another process, and both the acquire and release operations are 
atomic. 

 Acquire and release can be implemented as shown here, based on a boolean 
variable "available": 



 

 One problem with the implementation shown here, ( and in the hardware 
solutions presented earlier ), is the busy loop used to block processes in the 
acquire phase. These types of locks are referred to as spinlocks, because the 
CPU just sits and spins while blocking the process. 

 Spinlocks are wasteful of cpu cycles, and are a really bad idea on single-cpu 
single-threaded machines, because the spinlock blocks the entire computer, 
and doesn't allow any other process to release the lock. ( Until the scheduler 
kicks the spinning process off of the cpu. ) 

 On the other hand, spinlocks do not incur the overhead of a context switch, so 
they are effectively used on multi-threaded machines when it is expected that 
the lock will be released after a short time. 

5.6 Semaphores 

 A more robust alternative to simple mutexes is to use semaphores, which are 
integer variables for which only two ( atomic ) operations are defined, the wait 
and signal operations, as shown in the following figure. 

 Note that not only must the variable-changing steps ( S-- and S++ ) be indivisible, 
it is also necessary that for the wait operation when the test proves false that 
there be no interruptions before S gets decremented. It IS okay, however, for 
the busy loop to be interrupted when the test is true, which prevents the system 
from hanging forever. 



 

5.6.1 Semaphore Usage 

 In practice, semaphores can take on one of two forms: 
o Binary semaphores can take on one of two values, 0 or 1. They can be 

used to solve the critical section problem as described above, and can be 
used as mutexes on systems that do not provide a separate mutex 
mechanism.. The use of mutexes for this purpose is shown in Figure 6.9 ( 
from the 8th edition ) below. 

 
Mutual-exclusion implementation with semaphores. ( From 8th edition. ) 

o Counting semaphores can take on any integer value, and are usually 
used to count the number remaining of some limited resource. The 
counter is initialized to the number of such resources available in the 
system, and whenever the counting semaphore is greater than zero, then 



a process can enter a critical section and use one of the resources. When 
the counter gets to zero ( or negative in some implementations ), then 
the process blocks until another process frees up a resource and 
increments the counting semaphore with a signal call. ( The binary 
semaphore can be seen as just a special case where the number of 
resources initially available is just one. ) 

o Semaphores can also be used to synchronize certain operations between 
processes. For example, suppose it is important that process P1 execute 
statement S1 before process P2 executes statement S2. 

 First we create a semaphore named synch that is shared by the 
two processes, and initialize it to zero. 

 Then in process P1 we insert the code: 

S1; 

signal( synch ); 

 and in process P2 we insert the code: 

wait( synch ); 

S2; 

 Because synch was initialized to 0, process P2 will block on the 
wait until after P1 executes the call to signal. 

5.6.2 Semaphore Implementation 

 The big problem with semaphores as described above is the busy loop in the 
wait call, which consumes CPU cycles without doing any useful work. This type 
of lock is known as a spinlock, because the lock just sits there and spins while it 
waits. While this is generally a bad thing, it does have the advantage of not 
invoking context switches, and so it is sometimes used in multi-processing 
systems when the wait time is expected to be short - One thread spins on one 
processor while another completes their critical section on another processor. 

 An alternative approach is to block a process when it is forced to wait for an 
available semaphore, and swap it out of the CPU. In this implementation each 
semaphore needs to maintain a list of processes that are blocked waiting for it, 
so that one of the processes can be woken up and swapped back in when the 
semaphore becomes available. ( Whether it gets swapped back into the CPU 
immediately or whether it needs to hang out in the ready queue for a while is a 
scheduling problem. ) 

 The new definition of a semaphore and the corresponding wait and signal 
operations are shown as follows: 



 

 Note that in this implementation the value of the semaphore can actually 
become negative, in which case its magnitude is the number of processes 
waiting for that semaphore. This is a result of decrementing the counter before 
checking its value. 

 Key to the success of semaphores is that the wait and signal operations be 
atomic, that is no other process can execute a wait or signal on the same 
semaphore at the same time. ( Other processes could be allowed to do other 
things, including working with other semaphores, they just can't have access 
to this semaphore. ) On single processors this can be implemented by disabling 
interrupts during the execution of wait and signal; Multiprocessor systems have 
to use more complex methods, including the use of spinlocking. 



5.6.3 Deadlocks and Starvation 

 One important problem that can arise when using semaphores to block 
processes waiting for a limited resource is the problem of deadlocks, which 
occur when multiple processes are blocked, each waiting for a resource that can 
only be freed by one of the other ( blocked ) processes, as illustrated in the 
following example. ( Deadlocks are covered more completely in chapter 7. ) 

 

 Another problem to consider is that of starvation, in which one or more 
processes gets blocked forever, and never get a chance to take their turn in the 
critical section. For example, in the semaphores above, we did not specify the 
algorithms for adding processes to the waiting queue in the semaphore in the 
wait( ) call, or selecting one to be removed from the queue in the signal( ) call. 
If the method chosen is a FIFO queue, then every process will eventually get 
their turn, but if a LIFO queue is implemented instead, then the first process to 
start waiting could starve. 

5.6.4 Priority Inversion 

 A challenging scheduling problem arises when a high-priority process gets 
blocked waiting for a resource that is currently held by a low-priority process. 

 If the low-priority process gets pre-empted by one or more medium-priority 
processes, then the high-priority process is essentially made to wait for the 
medium priority processes to finish before the low-priority process can release 
the needed resource, causing a priority inversion. If there are enough medium-
priority processes, then the high-priority process may be forced to wait for a 
very long time. 

 One solution is a priority-inheritance protocol, in which a low-priority process 
holding a resource for which a high-priority process is waiting will temporarily 



inherit the high priority from the waiting process. This prevents the medium-
priority processes from preempting the low-priority process until it releases the 
resource, blocking the priority inversion problem. 

 The book has an interesting discussion of how a priority inversion almost 
doomed the Mars Pathfinder mission, and how the problem was solved when 
the priority inversion was stopped. Full details are available online  

5.7 Classic Problems of Synchronization 

The following classic problems are used to test virtually every new proposed 

synchronization algorithm. 

5.7.1 The Bounded-Buffer Problem 

 This is a generalization of the producer-consumer problem wherein access is 
controlled to a shared group of buffers of a limited size. 

 In this solution, the two counting semaphores "full" and "empty" keep track of 
the current number of full and empty buffers respectively ( and initialized to 0 
and N respectively. ) The binary semaphore mutex controls access to the critical 
section. The producer and consumer processes are nearly identical - One can 
think of the producer as producing full buffers, and the consumer producing 
empty buffers. 



 
Figures 5.9 and 5.10 use variables next_produced and next_consumed 

5.7.2 The Readers-Writers Problem 

 In the readers-writers problem there are some processes ( termed readers ) 
who only read the shared data, and never change it, and there are other 
processes ( termed writers ) who may change the data in addition to or instead 



of reading it. There is no limit to how many readers can access the data 
simultaneously, but when a writer accesses the data, it needs exclusive access. 

 There are several variations to the readers-writers problem, most centered 
around relative priorities of readers versus writers. 

o The first readers-writers problem gives priority to readers. In this 
problem, if a reader wants access to the data, and there is not already a 
writer accessing it, then access is granted to the reader. A solution to this 
problem can lead to starvation of the writers, as there could always be 
more readers coming along to access the data. ( A steady stream of 
readers will jump ahead of waiting writers as long as there is currently 
already another reader accessing the data, because the writer is forced 
to wait until the data is idle, which may never happen if there are enough 
readers. ) 

o The second readers-writers problem gives priority to the writers. In this 
problem, when a writer wants access to the data it jumps to the head of 
the queue - All waiting readers are blocked, and the writer gets access to 
the data as soon as it becomes available. In this solution the readers may 
be starved by a steady stream of writers. 

 The following code is an example of the first readers-writers problem, and 
involves an important counter and two binary semaphores: 

o readcount is used by the reader processes, to count the number of 
readers currently accessing the data. 

o mutex is a semaphore used only by the readers for controlled access 

to readcount. 

o rw_mutex is a semaphore used to block and release the writers. The 
first reader to access the data will set this lock and the last reader to exit 

will release it; The remaining readers do not touch rw_mutex. ( Eighth 

edition called this variable wrt. ) 

o Note that the first reader to come along will block on rw_mutex if there 
is currently a writer accessing the data, and that all following readers will 

only block on mutex for their turn to increment readcount. 



 

 Some hardware implementations provide specific reader-writer locks, which 
are accessed using an argument specifying whether access is requested for 
reading or writing. The use of reader-writer locks is beneficial for situation in 
which: (1) processes can be easily identified as either readers or writers, and (2) 
there are significantly more readers than writers, making the additional 
overhead of the reader-writer lock pay off in terms of increased concurrency of 
the readers. 



5.7.3 The Dining-Philosophers Problem 

 The dining philosophers problem is a classic synchronization problem involving 
the allocation of limited resources amongst a group of processes in a deadlock-
free and starvation-free manner: 

o Consider five philosophers sitting around a table, in which there are five 
chopsticks evenly distributed and an endless bowl of rice in the center, 
as shown in the diagram below. ( There is exactly one chopstick between 
each pair of dining philosophers. ) 

o These philosophers spend their lives alternating between two activities: 
eating and thinking. 

o When it is time for a philosopher to eat, it must first acquire two 
chopsticks - one from their left and one from their right. 

o When a philosopher thinks, it puts down both chopsticks in their original 
locations. 

 
Figure 5.13 - The situation of the dining philosophers 

 One possible solution, as shown in the following code section, is to use a set of 
five semaphores ( chopsticks[ 5 ] ), and to have each hungry philosopher first 
wait on their left chopstick ( chopsticks[ i ] ), and then wait on their right 
chopstick ( chopsticks[ ( i + 1 ) % 5 ] ) 

 But suppose that all five philosophers get hungry at the same time, and each 
starts by picking up their left chopstick. They then look for their right chopstick, 
but because it is unavailable, they wait for it, forever, and eventually all the 
philosophers starve due to the resulting deadlock. 



 
Figure 5.14 - The structure of philosopher i. 

 Some potential solutions to the problem include: 
o Only allow four philosophers to dine at the same time. ( Limited 

simultaneous processes. ) 
o Allow philosophers to pick up chopsticks only when both are available, in 

a critical section. ( All or nothing allocation of critical resources. ) 
o Use an asymmetric solution, in which odd philosophers pick up their left 

chopstick first and even philosophers pick up their right chopstick first. ( 
Will this solution always work? What if there are an even number of 
philosophers? ) 

 Note carefully that a deadlock-free solution to the dining philosophers problem 
does not necessarily guarantee a starvation-free one. ( While some or even 
most of the philosophers may be able to get on with their normal lives of eating 
and thinking, there may be one unlucky soul who never seems to be able to get 
both chopsticks at the same time. : 

       (OR) 

Classical Problems of Synchronization 

1. Bounded Buffer (Producer-Consumer) Problem 

2. Dining Philosophers Problem 

3. The Readers Writers Problem 



Bounded Buffer Problem 
Bounded buffer problem, which is also called producer consumer 
problem, is one of the classic problems of synchronization. Let's 
start by understanding the problem here, before moving on to the 
solution and program code. 

What is the Problem Statement? 

There is a buffer of n slots and each slot is capable of storing one 

unit of data. There are two processes running, 
namely, producer and consumer, which are operating on the 
buffer.

 

 

Bounded Buffer Problem  

A producer tries to insert data into an empty slot of the buffer. A 
consumer tries to remove data from a filled slot in the buffer. As 
you might have guessed by now, those two processes won't 
produce the expected output if they are being executed 
concurrently. 
There needs to be a way to make the producer and consumer work 
in an independent manner. 

Solution 

One solution of this problem is to use semaphores. The 
semaphores which will be used here are: 



 mutex, a binary semaphore which is used to acquire and 

release the lock.initial value is 1. 

 empty, a counting semaphore whose initial value is the 

number of slots in the buffer, since, initially all slots are empty. 

 full, a counting semaphore whose initial value is 0. 

At any instant, the current value of empty represents the number of 
empty slots in the buffer and full represents the number of occupied 
slots in the buffer. 

The Producer Operation 

The pseudocode of the producer function looks like this: 

do   
{ 
    // wait until empty > 0 and then 
decrement 'empty' 
    wait(empty);    
    // acquire lock 
    wait(mutex);   
     
    /* perform the insert operation in a slot 
*/     
   // release lock 
    signal(mutex);   
    // increment 'full' 
    signal(full);    
}  

 Looking at the above code for a producer, we can see that a 

producer first waits until there is atleast one empty slot. 



 Then it decrements the empty semaphore because, there will 

now be one less empty slot, since the producer is going to 

insert data in one of those slots. 

 Then, it acquires lock on the buffer, so that the consumer 

cannot access the buffer until producer completes its 

operation. 

 After performing the insert operation, the lock is released and 

the value of full is incremented because the producer has just 

filled a slot in the buffer. 

The Consumer Operation 

The pseudocode for the consumer function looks like this: 

do  

{ 

    // wait until full > 0 and then decrement 'full' 

    wait(full); 

    // acquire the lock 

    wait(mutex);   

     

    /* perform the remove operation in a slot */  

     

    // release the lock 

    signal(mutex);  

    // increment 'empty' 

    signal(empty);  

}  

while(TRUE); 

 



 

 The consumer waits until there is atleast one full slot in the 

buffer. 

 Then it decrements the full semaphore because the number 

of occupied slots will be decreased by one, after the consumer 

completes its operation. 

 After that, the consumer acquires lock on the buffer. 

 Following that, the consumer completes the removal 

operation so that the data from one of the full slots is removed. 

 Then, the consumer releases the lock. 

 Finally, the empty semaphore is incremented by 1, because 

the consumer has just removed data from an occupied slot, 

thus making it empty. 

Dining Philosophers Problem 

The dining philosophers problem is another classic synchronization 
problem which is used to evaluate situations where there is a need 
of allocating multiple resources to multiple processes. 

What is the Problem Statement? 

Consider there are five philosophers sitting around a circular dining 
table. The dining table has five chopsticks and a bowl of rice in the 
middle as shown in the below figure. 

 

 



 There is one chopstick between each philosopher 
 A philosopher must pick up its two nearest chopsticks in order 

to eat 
 A philosopher must pick up first one chopstick, then the second 

one, not both at once 
At any instant, a philosopher is either eating or thinking. When a 

philosopher wants to eat, he uses two chopsticks - one from their 

left and one from their right. When a philosopher wants to think, he 

keeps down both chopsticks at their original place. 

Here's the Solution 

From the problem statement, it is clear that a philosopher can think 
for an indefinite amount of time. But when a philosopher starts 
eating, he has to stop at some point of time. The philosopher is in 
an endless cycle of thinking and eating. 

An array of five semaphores, stick[5], for each of the five 

chopsticks. The code for each philosopher looks like: 

while(TRUE)  

{ 

    wait(stick[i]); 

    /*  

        mod is used because if i=5, next  

        chopstick is 1 (dining table is circular) 

    */ 

    wait(stick[(i+1) % 5]);   

                     

    /* eat */ 

    signal(stick[i]); 

     

    signal(stick[(i+1) % 5]);  

    /* think */} 



 

When a philosopher wants to eat the rice, he will wait for the 
chopstick at his left and picks up that chopstick. Then he waits for 
the right chopstick to be available, and then picks it too. After 
eating, he puts both the chopsticks down. 

But if all five philosophers are hungry simultaneously, and each of 
them pickup one chopstick, then a deadlock situation occurs 
because they will be waiting for another chopstick forever. The 
possible solutions for this are: 

 A philosopher must be allowed to pick up the chopsticks only 

if both the left and right chopsticks are available. 

 Allow only four philosophers to sit at the table. That way, if all 

the four philosophers pick up four chopsticks, there will be one 

chopstick left on the table. So, one philosopher can start 

eating and eventually, two chopsticks will be available. In this 

way, deadlocks can be avoided. 

Readers Writer Problem 
 Readers writer problem is another example of a classic 

synchronization problem. There are many variants of this problem, one 
of which is examined below. 

 

 The Problem Statement 
 There is a shared resource which should be accessed by multiple 

processes. There are two types of processes in this context. They 
are reader and writer. Any number of readers can read from the 
shared resource simultaneously, but only one writer can write to the 
shared resource. When a writer is writing data to the resource, no 
other process can access the resource. A writer cannot write to the 
resource if there are non zero number of readers accessing the 
resource at that time. 

 
 The Solution 



 From the above problem statement, it is evident that readers have 
higher priority than writer. If a writer wants to write to the resource, it 
must wait until there are no readers currently accessing that resource. 

 Here, we use one mutex m and a semaphore w. An integer 

variable read_count is used to maintain the number of readers 

currently accessing the resource. The variable read_count is 

initialized to 0. A value of 1 is given initially to m and w. 

 Instead of having the process to acquire lock on the shared resource, 
we use the mutex m to make the process to acquire and release lock 

whenever it is updating the read_count variable. 

 
The code for the writer process looks like this: 
 
while(TRUE)  
{ 
    wait(w); 
     
   /* perform the write operation */ 
    
   signal(w); 
} 

 
 

And, the code for the reader process looks like this: 

while(TRUE)  

{ 

    //acquire lock 

    wait(m); 

    read_count++; 

    if(read_count == 1) 

        wait(w); 

        //release lock   

    signal(m);   

     

    /* perform the reading operation */ 

     



    // acquire lock 

    wait(m);    

    read_count--; 

    if(read_count == 0) 

        signal(w); 

         

    // release lock 

    signal(m);   

} 

 

Here is the Code uncoded(explained) 

 As seen above in the code for the writer, the writer just waits on 

the w semaphore until it gets a chance to write to the resource. 

 After performing the write operation, it increments w so that the next 

writer can access the resource. 

 On the other hand, in the code for the reader, the lock is acquired 

whenever the read_count is updated by a process. 
 When a reader wants to access the resource, first it increments 

the read_countvalue, then accesses the resource and then 
decrements the read_count value. 

 The semaphore w is used by the first reader which enters the critical 

section and the last reader which exits the critical section. 

 The reason for this is, when the first readers enters the critical section, 

the writer is blocked from the resource. Only new readers can access 

the resource now. 

 Similarly, when the last reader exits the critical section, it signals the 

writer using the w semaphore because there are zero readers now and 

a writer can have the chance to access the resource. 

 



5.8 Monitors 

 Semaphores can be very useful for solving concurrency problems, but only if 
programmers use them properly. If even one process fails to abide by the 
proper use of semaphores, either accidentally or deliberately, then the whole 
system breaks down. ( And since concurrency problems are by definition rare 
events, the problem code may easily go unnoticed and/or be heinous to debug. 
) 

 For this reason a higher-level language construct has been developed, 
called monitors. 

5.8.1 Monitor Usage 

 Monitor is a programming language construct that controls access to shared 
data 
  synchronization code added by the compiler 
  synchronization enforced by the runtime 

 Monitor is an abstract data type (ADT) that encapsulates 
shared data structures 
procedures that operate on the shared data structures 
synchronization between the concurrent procedure invocations 

 Protects the shared data structures inside the monitor from outside access. 
 Guarantees that monitor procedures (or operations) can only legitimately 

update the shared data. 
 A monitor is essentially a class, in which all data is private, and with the special 

restriction that only one method within any given monitor object may be active 
at the same time. An additional restriction is that monitor methods may only 
access the shared data within the monitor and any data passed to them as 
parameters. I.e. they cannot access any data external to the monitor. 



 
Figure 5.15 - Syntax of a monitor. 

 Figure 5.16 shows a schematic of a monitor, with an entry queue of processes 
waiting their turn to execute monitor operations ( methods). 



 
 

Figure 5.16 - Schematic view of a monitor 

 In order to fully realize the potential of monitors, we need to introduce one 
additional new data type, known as a condition. 

o A variable of type condition has only two legal 
operations, wait and signal. I.e. if X was defined as type condition, then 
legal operations would be X.wait( ) and X.signal( ) 

o The wait operation blocks a process until some other process calls signal, 
and adds the blocked process onto a list associated with that condition. 

o The signal process does nothing if there are no processes waiting on that 
condition. Otherwise it wakes up exactly one process from the 
condition's list of waiting processes. ( Contrast this with counting 
semaphores, which always affect the semaphore on a signal call. ) 

 Figure 6.18 below illustrates a monitor that includes condition variables within 
its data space. Note that the condition variables, along with the list of processes 
currently waiting for the conditions, are in the data space of the monitor - The 
processes on these lists are not "in" the monitor, in the sense that they are not 
executing any code in the monitor. 



 
Figure 5.17 - Monitor with condition variables 

 But now there is a potential problem - If process P within the monitor issues a 
signal that would wake up process Q also within the monitor, then there would 
be two processes running simultaneously within the monitor, violating the 
exclusion requirement. Accordingly there are two possible solutions to this 
dilemma: 

Signal and wait - When process P issues the signal to wake up process Q, P then waits, 

either for Q to leave the monitor or on some other condition. 

Signal and continue - When P issues the signal, Q waits, either for P to exit the monitor 

or for some other condition. 

There are arguments for and against either choice. Concurrent Pascal offers a third 

alternative - The signal call causes the signaling process to immediately exit the 

monitor, so that the waiting process can then wake up and proceed. 

 Java and C# ( C sharp ) offer monitors bulit-in to the language. Erlang offers 
similar but different constructs. 



Bounded Buffer Using Monitors 

Monitor bounded_buffer { 

    Resource buffer[N]; 

    // condition variables 

    Condition empty, full; 

    void producer (Resource R) { 

        while (buffer full) 

            empty.wait( ); 

        // add R to buffer array 

        full.signal( ); 

    } 

Void  consumer ( ) { 

        while (buffer empty) 

            full.wait( ); 

        // get Resource from buffer  

        empty.signal( ); 

        return R; 

    } 

} // end monitor 

5.8.2 Dining-Philosophers Solution Using Monitors 

 This solution to the dining philosophers uses monitors, and the restriction that 
a philosopher may only pick up chopsticks when both are available. There are 
also two key data structures in use in this solution: 

1. enum { THINKING, HUNGRY,EATING } state[ 5 ]; A 

philosopher may only set their state to eating when neither of their 
adjacent neighbors is eating. ( state[ ( i + 1 ) % 5 ] != EATING && 
state[ ( i + 4 ) % 5 ] != EATING ). 

2. condition self[ 5 ]; This condition is used to delay a hungry 

philosopher who is unable to acquire chopsticks. 



 In the following solution philosophers share a monitor, DiningPhilosophers, and 
eat using the following sequence of operations: 

1. DiningPhilosophers.pickup( ) - Acquires chopsticks, which may block the 
process. 

2. eat 
3. DiningPhilosophers.putdown( ) - Releases the chopsticks. 



 

5.8.3 Implementing a Monitor Using Semaphores 

 One possible implementation of a monitor uses a semaphore "mutex" to 
control mutual exclusionary access to the monitor, and a counting semaphore 



"next" on which processes can suspend themselves after they are already 
"inside" the monitor ( in conjunction with condition variables, see below. ) The 
integer next_count keeps track of how many processes are waiting in the next 
queue. Externally accessible monitor processes are then implemented as: 

 

 Condition variables can be implemented using semaphores as well. For a 
condition x, a semaphore "x_sem" and an integer "x_count" are introduced, 
both initialized to zero. The wait and signal methods are then implemented as 
follows. ( This approach to the condition implements the signal-and-wait option 
described above for ensuring that only one process at a time is active inside the 
monitor. ) 



 

5.8.4 Resuming Processes Within a Monitor 

 When there are multiple processes waiting on the same condition within a 
monitor, how does one decide which one to wake up in response to a signal on 
that condition? One obvious approach is FCFS, and this may be suitable in many 
cases. 

 Another alternative is to assign ( integer ) priorities, and to wake up the process 
with the smallest ( best ) priority. 

 Figure 5.19 illustrates the use of such a condition within a monitor used for 
resource allocation. Processes wishing to access this resource must specify the 
time they expect to use it using the acquire( time ) method, and must call the 
release( ) method when they are done with the resource. 



 
Figure 5.19 - A monitor to allocate a single resource. 

 Unfortunately the use of monitors to restrict access to resources still only works 
if programmers make the requisite acquire and release calls properly. One 
option would be to place the resource allocation code into the monitor, thereby 
eliminating the option for programmers to bypass or ignore the monitor, but 
then that would substitute the monitor's scheduling algorithms for whatever 
other scheduling algorithms may have been chosen for that particular resource. 
Chapter 14 on Protection presents more advanced methods for enforcing "nice" 
cooperation among processes contending for shared resources. 

 Concurrent Pascal, Mesa, C#, and Java all implement monitors as described 
here. Erlang provides concurrency support using a similar mechanism. 

5.9 Synchronization Examples  

This section looks at how synchronization is handled in a number of different systems. 



5.9.1 Synchronization in Windows 

 
Figure 5.20 - Mutex dispatcher object 

5.9.2 Synchronization in Linux 

 

5.9.3 Synchronization in Solaris 

 Solaris controls access to critical sections using five tools: semaphores, 
condition variables, adaptive mutexes, reader-writer locks, and turnstiles. The 
first two are as described above, and the other three are described here: 

Adaptive Mutexes 

 Adaptive mutexes are basically binary semaphores that are implemented 
differently depending upon the conditions: 

o On a single processor system, the semaphore sleeps when it is blocked, 
until the block is released. 

o On a multi-processor system, if the thread that is blocking the semaphore 
is running on the same processor as the thread that is blocked, or if the 
blocking thread is not running at all, then the blocked thread sleeps just 
like a single processor system. 

o However if the blocking thread is currently running on a different 
processor than the blocked thread, then the blocked thread does a 
spinlock, under the assumption that the block will soon be released. 

o Adaptive mutexes are only used for protecting short critical sections, 
where the benefit of not doing context switching is worth a short bit of 
spinlocking. Otherwise traditional semaphores and condition variables 
are used. 



Reader-Writer Locks 

 Reader-writer locks are used only for protecting longer sections of code which 
are accessed frequently but which are changed infrequently. 

Turnstiles 

 A turnstile is a queue of threads waiting on a lock. 
 Each synchronized object which has threads blocked waiting for access to it 

needs a separate turnstile. For efficiency, however, the turnstile is associated 
with the thread currently holding the object, rather than the object itself. 

 In order to prevent priority inversion, the thread holding a lock for an object 
will temporarily acquire the highest priority of any process in the turnstile 
waiting for the blocked object. This is called a priority-inheritance protocol. 

 User threads are controlled the same as for kernel threads, except that the 
priority-inheritance protocol does not apply. 

5.10 Alternate Approaches  
o Transactional Memory  

o OpenMP  

o Functional Programming Langua 

 Transactional Memory 

 A memory transaction is a sequence of read-write operations to memory that 

are performed atomically. 

void update()  

{  

/* read/write memory */  

}  

OpenMP  

 



 

 Functional Programming Languages 

 Functional programming languages offer a different paradigm than procedural 

languages in that they do not maintain state. 

 Variables are treated as immutable and cannot change state once they have 

been assigned a value. 

 There is increasing interest in functional languages such as Erlang and Scala for 

their approach in handling data races 

 

 

 



Chapter-6  

CPU Scheduling 

CPU scheduling is a process which allows one process to use the CPU while the 
execution of another process is on hold(in waiting state) due to unavailability of any 
resource like I/O etc, thereby making full use of CPU. The aim of CPU scheduling is to 

make the system efficient, fast and fair. 

Whenever the CPU becomes idle, the operating system must select one of the processes 
in the ready queue to be executed. The selection process is carried out by the short-term 
scheduler (or CPU scheduler). The scheduler selects from among the processes in 

memory that are ready to execute, and allocates the CPU to one of them 

Histogram of CPU-burst Times 

 

 

Indicates there are less no.of longer cpu burst processes and more 

no.of smaller cpu bursts 

CPU Scheduling: Dispatcher 

Another component involved in the CPU scheduling function is the Dispatcher. The 

dispatcher is the module that gives control of the CPU to the process selected by 
the short-term scheduler. This function involves: 



 Switching context 

 Switching to user mode 

 Jumping to the proper location in the user program to restart that program from where it 

left last time. 

The dispatcher should be as fast as possible, given that it is invoked during every process 
switch. The time taken by the dispatcher to stop one process and start another process 
is known as the Dispatch Latency. Dispatch Latency can be explained using the below 

figure: 

Types of CPU Scheduling 

CPU scheduling decisions may take place under the following four circumstances: 

1. When a process switches from the running state to the waiting state(for I/O request or 

invocation of wait for the termination of one of the child processes). 

2. When a process switches from the running state to the ready state (for example, when 

an interrupt occurs). 

3. When a process switches from the waiting state to the ready state(for example, 

completion of I/O). 

4. When a process terminates. 

In circumstances 1 and 4, there is no choice in terms of scheduling. A new process(if one 
exists in the ready queue) must be selected for execution. There is a choice, however in 

circumstances 2 and 3. 

When Scheduling takes place only under circumstances 1 and 4, we say the scheduling 
scheme is non-preemptive; otherwise the scheduling scheme is preemptive. 

Non-Preemptive Scheduling 

Under non-preemptive scheduling, once the CPU has been allocated to a process, the 
process keeps the CPU until it releases the CPU either by terminating or by switching to 
the waiting state. 

This scheduling method is used by the Microsoft Windows 3.1 and by the Apple Macintosh 
operating systems. 

It is the only method that can be used on certain hardware platforms, because It does not 

require the special hardware(for example: a timer) needed for preemptive scheduling. 

 



Preemptive Scheduling 

In this type of Scheduling, the tasks are usually assigned with priorities. At times it is 
necessary to run a certain task that has a higher priority before another task although it 
is running. Therefore, the running task is interrupted for some time and resumed later 

when the priority task has finished its execution. 

 

CPU Scheduling: Scheduling Criteria 

There are many different criterias to check when considering the "best" scheduling 

algorithm, they are: 

CPU Utilization 

To make out the best use of CPU and not to waste any CPU cycle, CPU would be working 
most of the time(Ideally 100% of the time). Considering a real system, CPU usage should 

range from 40% (lightly loaded) to 90% (heavily loaded.) 

Throughput 

It is the total number of processes completed per unit time or rather say total amount of 
work done in a unit of time. This may range from 10/second to 1/hour depending on the 
specific processes. 

Turnaround Time 

It is the amount of time taken to execute a particular process, i.e. The interval from time 
of submission of the process to the time of completion of the process(Wall clock time). 

Waiting Time 

The sum of the periods spent waiting in the ready queue amount of time a process has 
been waiting in the ready queue to acquire get control on the CPU. 

Load Average 

It is the average number of processes residing in the ready queue waiting for their turn to 
get into the CPU. 

Response Time 

Amount of time it takes from when a request was submitted until the first response is 
produced. Remember, it is the time till the first response and not the completion of process 
execution(final response). 

In general CPU utilization and Throughput are maximized and other factors are reduced 

for proper optimization. 

 Scheduling Algorithm Optimization 

Criteria 



 Max CPU utilization 

 Max throughput 

 Min turnaround time  

 Min waiting time  

 Min response time 

Scheduling Algorithms 

To decide which process to execute first and which process to execute last to achieve 

maximum CPU utilisation, computer scientists have defined some algorithms, they are: 

1. First Come First Serve(FCFS) Scheduling 

2. Shortest-Job-First(SJF) Scheduling 

3. Priority Scheduling 

4. Round Robin(RR) Scheduling 

5. Multilevel Queue Scheduling 

6. Multilevel Feedback Queue Scheduling 

First Come First Serve Scheduling 

In the "First come first serve" scheduling algorithm, as the name suggests, the process 
which arrives first, gets executed first, or we can say that the process which requests the 
CPU first, gets the CPU allocated first. 

 First Come First Serve, is just like FIFO(First in First out) Queue data structure, where the 

data element which is added to the queue first, is the one who leaves the queue first. 

 This is used in Batch Systems. 

 It's easy to understand and implement programmatically, using a Queue data structure, 

where a new process enters through the tail of the queue, and the scheduler selects 

process from the head of the queue. 

 A perfect real life example of FCFS scheduling is buying tickets at ticket counter. 
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https://www.studytonight.com/operating-system/round-robin-scheduling
https://www.studytonight.com/operating-system/multilevel-queue-scheduling
https://www.studytonight.com/operating-system/multilevel-feedback-queue-scheduling
https://www.studytonight.com/operating-system/types-of-os


Calculating Average Waiting Time 

For every scheduling algorithm, Average waiting time is a crucial parameter to judge it's 

performance. 

AWT or Average waiting time is the average of the waiting times of the processes in the 
queue, waiting for the scheduler to pick them for execution. 

Lower the Average Waiting Time, better the scheduling algorithm. 

Consider the processes P1, P2, P3, P4 given in the below table, arrives for execution in 
the same order, with Arrival Time 0, and given Burst Time, let's find the average waiting 

time using the FCFS scheduling algorithm. 

 

The average waiting time will be 18.75 ms 

For the above given processes, first P1 will be provided with the CPU resources, 

 Hence, waiting time for P1 will be 0 

 P1 requires 21 ms for completion, hence waiting time for P2 will be 21 ms 

 Similarly, waiting time for process P3 will be execution time of P1 + execution time 

for P2, which will be (21 + 3) ms = 24 ms. 

 For process P4 it will be the sum of execution times of P1, P2 and P3. 

The GANTT chart above perfectly represents the waiting time for each process. 



Completion Time: Time taken for the execution to complete, starting from arrival time. 

Turn Around Time: Time taken to complete after arrival. In simple words, it is the 

difference between the Completion time and the Arrival time. 

Turn Around Time = Completion Time – Arrival Time 

Waiting Time: Total time the process has to wait before it's execution begins. It is the 

difference between the Turn Around time and the Burst time of the process. 

Waiting Time = Turn Around Time – Burst Time 

 

Ex2: 

  

Ex3: 

 



 

1. Process     Wait Time : Service Time - Arrival Time 
2.    P0                        0 - 0   = 0 
3.    P1                        5 - 1   = 4 
4.    P2                        8 - 2   = 6 
5.    P3                        16 - 3  = 13 
6.  
7. Average Wait Time: (0 + 4 + 6 + 13) / 4 = 5.75 

Service Time : Service time means amount of time after which a process can 

start execution. It is summation of burst time of previous processes 

 



 

Let's take an example of The FCFS scheduling algorithm. In the Following schedule, there are 
5 processes with process ID P0, P1, P2, P3 and P4. P0 arrives at time 0, P1 at time 1, P2 
at time 2, P3 arrives at time 3 and Process P4 arrives at time 4 in the ready queue. The 
processes and their respective Arrival and Burst time are given in the following table. 

The Turnaround time and the waiting time are calculated by using the following formula. 

1. Turn Around Time = Completion Time - Arrival Time    

2.     Waiting Time = Turnaround time - Burst Time    

Process 

ID 

Arrival 

Time 

Burst 

Time 

Completi

on Time 

Turn 

Around 

Time 

Waiting 

time 

0 0 2 2 2 0 

1 1 6 8 7 1 

2 2 4 12 8 4 



 

The average waiting Time is determined by summing the respective waiting time of all the 
processes and divided the sum by the total number of processes. 

               Avg Waiting Time=31/5 

             (Gantt chart) 

 

 

Advantages of FCFS 
o Simple 

o Easy 

o First come, First serve 

Problems or disadvantages with FCFS 

Scheduling 

Below we have a few shortcomings or problems with the FCFS scheduling algorithm: 

1. It is Non Pre-emptive algorithm, which means the process priority doesn't matter. 

If a process with very least priority is being executed, more like daily routine 

backup process, which takes more time, and all of a sudden some other high 

priority process arrives, like interrupt to avoid system crash, the high priority 

process will have to wait, and hence in this case, the system will crash, just 

because of improper process scheduling. 

2. Not optimal Average Waiting Time. 

3 3 9 21 18 9 

4 4 12 33 29 17 



3. Resources utilization in parallel is not possible, which leads to Convoy Effect, and hence 

poor resource(CPU, I/O etc) utilization. 

 

What is Convoy Effect? 
 

Convoy Effect is a situation where many processes, who need to use a resource for short 
time are blocked by one process holding that resource for a long time. 

This essentially leads to poor utilization of resources and hence poor performance. 

Shortest Job First(SJF) Scheduling 
Shortest Job First scheduling works on the process with the shortest burst 

time or duration first. 

 This is the best approach to minimize waiting time. 

 This is used in Batch Systems. 

 It is of two types: 

1. Non Pre-emptive 

2. Pre-emptive 

 To successfully implement it, the burst time/duration time of the processes should 

be known to the processor in advance, which is practically not feasible all the time. 

 This scheduling algorithm is optimal if all the jobs/processes are available at the 

same time. (either Arrival time is 0 for all, or Arrival time is same for all) 

Non Pre-emptive Shortest Job First 

Consider the below processes available in the ready queue for execution, with arrival 

time as 0 for all and given burst times. 

https://www.studytonight.com/operating-system/types-of-os


 

As you can see in the GANTT chart above, the process P4 will be picked up 
first as it has the shortest burst time, then P2, followed by P3 and at last P1. 

We scheduled the same set of processes using the First come first 
serve algorithm in the previous tutorial, and got average waiting time to be 18.75 
ms, whereas with SJF, the average waiting time comes out 4.5 ms. 

Ex: 

As an example, consider the following set of processes, with the length of 

the CPU-burst time given in milliseconds: 

 

 

Using SJF scheduling, we would schedule these processes according to 

the following Gantt chart: 
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The waiting time is 3 milliseconds for process P1, 16 milliseconds for process P2, 9 

milliseconds for process P3, and 0 milliseconds for process P4. Thus, the average 

waiting time is (3 +16 +9 + 0) /4 = 7 milliseconds. If we were using the FCFS 

scheduling scheme, then the average waiting time would be 10.25 milliseconds. 

The SJF scheduling algorithm is provably optimal, in that it gives the minimum 

average waiting time for a given set of processes. By moving a short process before 

a long one, the waiting time of the short process decreases more than it increases 

the waiting time of the long process. Consequently, the average waiting time 

decreases. 

 

 
 

 

 

 

Problem with Non Pre-emptive SJF 

If the arrival time for processes are different, which means all the processes are not 
available in the ready queue at time 0, and some jobs arrive after some time, in such 



situation, sometimes process with short burst time have to wait for the current process's 
execution to finish, because in Non Pre-emptive SJF, on arrival of a process with short 
duration, the existing job/process's execution is not halted/stopped to execute the short 
job first. 

This leads to the problem of Starvation, where a shorter process has to wait for a long 

time until the current longer process gets executed. This happens if shorter jobs keep 
coming, but this can be solved using the concept of aging. 

Pre-emptive Shortest Job First 

In Preemptive Shortest Job First Scheduling, jobs are put into ready queue as they arrive, 
but as a process with short burst time arrives, the existing process is preempted or 

removed from execution, and the shorter job is executed first. 

 

As you can see in the GANTT chart above, as P1 arrives first, hence it's execution starts 
immediately, but just after 1 ms, process P2 arrives with a burst time of 3 mswhich is less 
than the burst time of P1, hence the process P1(1 ms done, 20 ms left) is preemptied and 
process P2 is executed. 

As P2 is getting executed, after 1 ms, P3 arrives, but it has a burst time greater than that 
of P2, hence execution of P2 continues. But after another millisecond, P4 arrives with a 

burst time of 2 ms, as a result P2(2 ms done, 1 ms left) is preemptied and P4 is executed. 



After the completion of P4, process P2 is picked up and finishes, then P2 will get 
executed and at last P1. 

The Pre-emptive SJF is also known as Shortest Remaining Time First, because at any 

given point of time, the job with the shortest remaining time is executed first. 

Shortest Remaining Time First (SRTF) 
Scheduling Algorithm 

This Algorithm is the preemptive version of SJF scheduling. In SRTF, the execution of the 

process can be stopped after certain amount of time. At the arrival of every process, the short 
term scheduler schedules the process with the least remaining burst time among the list of 
available processes and the running process. 

Once all the processes are available in the ready queue, No preemption will be done and the 
algorithm will work as SJF scheduling. The context of the process is saved in the Process 
Control Block when the process is removed from the execution and the next process is 

scheduled. This PCB is accessed on the next execution of this process. 

Example 

In this Example, there are five jobs P1, P2, P3, P4, P5 and P6. Their arrival time and burst 
time are given below in the table. 

Process 

ID 

Arriva

l Time 

Burst Time Completion 

Time 

Turn 

Around 

Time 

Waiting 

Time 

Resp

onse 

Time 

1 0 8 20 20 12 0 

2 1 4 10 9 5 1 

3 2 2 4 2 0 2 

4 3 1 5 2 1 4 

5 4 3 13 9 6 10 

6 5 2 7 2 0 5 

 

                    Avg Waiting Time = 24/6 



The Gantt chart is prepared according to the arrival and burst time given in the table. 

 

1. Since, at time 0, the only available process is P1 with CPU burst time 8. This is the 

only available process in the list therefore it is scheduled. 

2. The next process arrives at time unit 1. Since the algorithm we are using is SRTF which 

is a preemptive one, the current execution is stopped and the scheduler checks for the 

process with the least burst time. 

Till now, there are two processes available in the ready queue. The OS has executed 

P1 for one unit of time till now; the remaining burst time of P1 is 7 units. The burst 

time of Process P2 is 4 units. Hence Process P2 is scheduled on the CPU according to 

the algorithm. 

3. The next process P3 arrives at time unit 2. At this time, the execution of process P3 is 

stopped and the process with the least remaining burst time is searched. Since the 

process P3 has 2 unit of burst time hence it will be given priority over others. 

4. The Next Process P4 arrives at time unit 3. At this arrival, the scheduler will stop the 

execution of P4 and check which process is having least burst time among the available 

processes (P1, P2, P3 and P4). P1 and P2 are having the remaining burst time 7 units 

and 3 units respectively. 

P3 and P4 are having the remaining burst time 1 unit each. Since, both are equal 
hence the scheduling will be done according to their arrival time. P3 arrives earlier 
than P4 and therefore it will be scheduled again. 

5. The Next Process P5 arrives at time unit 4. Till this time, the Process P3 has completed 

its execution and it is no more in the list. The scheduler will compare the remaining 

burst time of all the available processes. Since the burst time of process P4 is 1 which 

is least among all hence this will be scheduled. 

6. The Next Process P6 arrives at time unit 5, till this time, the Process P4 has completed 

its execution. We have 4 available processes till now, that are P1 (7), P2 (3), P5 (3) 

and P6 (2). The Burst time of P6 is the least among all hence P6 is scheduled. Since, 

now, all the processes are available hence the algorithm will now work same as SJF. 

P6 will be executed till its completion and then the process with the least remaining 

time will be scheduled. 

SRTF GATE 2011 Example 

If we talk about scheduling algorithm from the GATE point of view, they 

generally ask simple numerical questions about finding the average waiting 



time and Turnaround Time. Let's discuss the question asked in GATE 2011 on 

SRTF. 

Q. Given the arrival time and burst time of 3 jobs in the table below. Calculate the Average 

waiting time of the system. 

 

Process ID Arrival Time Burst Time Completion 

Time 

Turn Around 

Time 

Waiting 

Time 

1 0 9 13 13 4 

2 1 4 5 4 0 

3 2 9 22 20 11 

There are three jobs P1, P2 and P3. P1 arrives at time unit 0; it will be scheduled first for the 

time until the next process arrives. P2 arrives at 1 unit of time. Its burst time is 4 units which 
is least among the jobs in the queue. Hence it will be scheduled next. 

At time 2, P3 will arrive with burst time 9. Since remaining burst time of P2 is 3 units which 
are least among the available jobs. Hence the processor will continue its execution till its 
completion. Because all the jobs have been arrived so no preemption will be done now and 
all the jobs will be executed till the completion according to SJF. 

 

Avg Waiting Time = (4+0+11)/3 = 5 units 

Priority Scheduling 

In Priority scheduling, there is a priority number assigned to each process. In 

some systems, the lower the number, the higher the priority. While, in the 

others, the higher the number, the higher will be the priority. The Process with 

the higher priority among the available processes is given the CPU. There are 
two types of priority scheduling algorithm exists. One is Preemptive priority 

scheduling while the other is Non Preemptive Priority scheduling. 



The priority number assigned to each of the process may or may not vary. 

If the priority number doesn't change itself throughout the process, it is 

called static priority, while if it keeps changing itself at the regular intervals, 

it is called dynamic priority. 

Non Preemptive Priority Scheduling 

In the Non Preemptive Priority scheduling, The Processes are scheduled 
according to the priority number assigned to them. Once the process gets 

scheduled, it will run till the completion. Generally, the lower the priority 

number, the higher is the priority of the process. The people might get 

confused with the priority numbers, hence in the GATE, there clearly mention 

which one is the highest priority and which one is the lowest one. 

Example 

In the Example, there are 7 processes P1, P2, P3, P4, P5, P6 and P7. Their priorities, 

Arrival Time and burst time are given in the table. 

Process ID Priority Arrival Time Burst Time 

1 2 0 3 

2 6 2 5 

3 3 1 4 

4 5 4 2 

5 7 6 9 

6 4 5 4 

7 10 7 10 

We can prepare the Gantt chart according to the Non Preemptive priority scheduling. 



The Process P1 arrives at time 0 with the burst time of 3 units and the priority number 
2. Since No other process has arrived till now hence the OS will schedule it 

immediately. 

Meanwhile the execution of P1, two more Processes P2 and P3 are arrived. Since the 

priority of P3 is 3 hence the CPU will execute P3 over P2. 

Meanwhile the execution of P3, All the processes get available in the ready queue. 

The Process with the lowest priority number will be given the priority. Since P6 has 

priority number assigned as 4 hence it will be executed just after P3. 

After P6, P4 has the least priority number among the available processes; it will get 

executed for the whole burst time. 

Since all the jobs are available in the ready queue hence All the Jobs will get executed 

according to their priorities. If two jobs have similar priority number assigned to 

them, the one with the least arrival time will be executed. 

 

From the GANTT Chart prepared, we can determine the completion time of every process. 

The turnaround time, waiting time and response time will be determined. 

1. Turn Around Time = Completion Time - Arrival Time    

2. Waiting Time = Turn Around Time - Burst Time    

Process 

Id 

Priority Arrival 

Time 

Burst 

Time 

Completion 

Time 

Turnaround 

Time 

Waiting 

Time 

Respon

se Time 

1 2 0 3 3 3 0 0 

2 6 2 5 18 16 11 13 

3 3 1 4 7 6 2 3 

4 5 4 2 13 9 7 11 

5 7 6 9 27 21 12 18 

6 4 5 4 11 6 2 7 

7 10 7 10 37 30 20 27 



                      Avg Waiting Time = (0+11+2+7+12+2+18)/7 = 54/7 units 

Preemptive Priority Scheduling 

In Preemptive Priority Scheduling, at the time of arrival of a process in the 

ready queue, its Priority is compared with the priority of the other processes 

present in the ready queue as well as with the one which is being executed by 

the CPU at that point of time. The One with the highest priority among all the 

available processes will be given the CPU next. 

The difference between preemptive priority scheduling and non preemptive 
priority scheduling is that, in the preemptive priority scheduling, the job which 

is being executed can be stopped at the arrival of a higher priority job. 

Once all the jobs get available in the ready queue, the algorithm will behave 

as non-preemptive priority scheduling, which means the job scheduled will run 

till the completion and no preemption will be done. 

Example 

There are 7 processes P1, P2, P3, P4, P5, P6 and P7 given. Their respective 

priorities, Arrival Times and Burst times are given in the table below. 

 

Process Id Priority Arrival Time Burst Time 

1 2(L) 0 1 

2 6 1 7 

3 3 2 3 

4 5 3 6 

5 4 4 5 

6 10(H) 5 15 

7 9 15 8 



GANTT chart Preparation 

At time 0, P1 arrives with the burst time of 1 units and priority 2. Since no 

other process is available hence this will be scheduled till next job arrives or 

its completion (whichever is lesser). 

 

At time 1, P2 arrives. P1 has completed its execution and no other process is 

available at this time hence the Operating system has to schedule it regardless 

of the priority assigned to it. 

 

The Next process P3 arrives at time unit 2, the priority of P3 is higher to P2. 

Hence the execution of P2 will be stopped and P3 will be scheduled on the cpu 

. 

 

During the execution of P3, three more processes P4, P5 and P6 becomes 

available. Since, all these three have the priority lower to the process in 

execution so PS can't preempt the process. P3 will complete its execution and 
then P5 will be scheduled with the priority highest among the available 

processes. 



 

Meanwhile the execution of P5, all the processes got available in the ready 

queue. At this point, the algorithm will start behaving as Non Preemptive 

Priority Scheduling. Hence now, once all the processes get available in the 

ready queue, the OS just took the process with the highest priority and 

execute that process till completion. In this case, P4 will be scheduled and will 

be executed till the completion. 

 

 

 

Since P4 is completed, the other process with the highest priority available in 

the ready queue is P2. Hence P2 will be scheduled next. 

 

P2 is given the CPU till the completion. Since its remaining burst time is 6 

units hence P7 will be scheduled after this. 

 



The only remaining process is P6 with the least priority, the Operating System 

has no choice unless of executing it. This will be executed at the last. 

 

 

The Completion Time of each process is determined with the help of GANTT 

chart. The turnaround time and the waiting time can be calculated by the 

following formula. 

1. Turnaround Time = Completion Time - Arrival Time    

2. Waiting Time = Turn Around Time - Burst Time    

 

Process Id Priority Arrival 

Time 

Burst Time Completio

n Time 

Turn 

around 

Time 

Waitin

g Time 

1 2 0 1 1 1 0 

2 6 1 7 22 21 14 

3 3 2 3 5 3 0 

4 5 3 6 16 13 7 

5 4 4 5 10 6 1 

6 10 5 15 45 40 25 

7 9 6 8 30 24 16 

                    Avg Waiting Time = (0+14+0+7+1+25+16)/7 = 63/7 = 9 units 

Round Robin Scheduling Algorithm 

Round Robin scheduling algorithm is one of the most popular scheduling 
algorithm which can actually be implemented in most of the operating 

systems. This is the preemptive version of first come first serve scheduling. 

The Algorithm focuses on Time Sharing. In this algorithm, every process gets 



executed in a cyclic way. A certain time slice is defined in the system which 

is called time quantum. Each process present in the ready queue is assigned 
the CPU for that time quantum, if the execution of the process is completed 

during that time then the process will terminate else the process will go back 

to the ready queue and waits for the next turn to complete the execution. 

 

Advantages 
1. It can be actually implementable in the system because it is not depending on the 

burst time. 

2. It doesn't suffer from the problem of starvation or convoy effect. 

3. All the jobs get a fare allocation of CPU. 

Disadvantages 
1. The higher the time quantum, the higher the response time in the 

system. 

2. The lower the time quantum, the higher the context switching overhead 

in the system. 

3. Deciding a perfect time quantum is really a very difficult task in the 

system. 

RR Scheduling Example 



In the following example, there are six processes named as P1, P2, P3, P4, P5 

and P6. Their arrival time and burst time are given below in the table. The 

time quantum of the system is 4 units. 

Process 

ID 

Arrival 

Time 

Burst Time 

1 0 5 

2 1 6 

3 2 3 

4 3 1 

5 4 5 

6 6 4 

According to the algorithm, we have to maintain the ready queue and the 

Gantt chart. The structure of both the data structures will be changed after 

every scheduling. 

Note:  Refer notebook 

 

 

Multilevel Queue (MLQ) CPU Scheduling 

 

It may happen that processes in the ready queue can be divided into different classes where each 

class has its own scheduling needs. For example, a common division is a foreground 

(interactive) process and background (batch) processes.These two classes have different 

scheduling needs. For this kind of situation Multilevel Queue Scheduling is used.Now, let us see 

how it works. 

Ready Queue is divided into separate queues for each class of processes. For example, let us take 

three different types of process System processes, Interactive processes and Batch Processes. All 

three process have there own queue. Now,look at the below figure. 



 

 

All three different type of processes have there own queue. Each queue have its own Scheduling 

algorithm. For example, queue 1 and queue 2 uses Round Robin while queue 3 can use FCFS to 

schedule there processes. 

Scheduling among the queues : What will happen if all the queues have some processes? Which 

process should get the cpu? To determine this Scheduling among the queues is necessary. There 

are two ways to do so – 

1. Fixed priority preemptive scheduling method – Each queue has absolute priority over 

lower priority queue. Let us consider following priority order queue 1 > queue 2 > queue 

3.According to this algorithm no process in the batch queue(queue 3) can run unless queue 

1 and 2 are empty. If any batch process (queue 3) is running and any system (queue 1) or 

Interactive process(queue 2) entered the ready queue the batch process is preempted. 

2. Time slicing – In this method each queue gets certain portion of CPU time and can use it to 

schedule its own processes.For instance, queue 1 takes 50 percent of CPU time queue 2 takes 

30 percent and queue 3 gets 20 percent of CPU time. 

Example Problem : 
Consider below table of four processes under Multilevel queue scheduling.Queue number denotes 

the queue of the process. 

 

Priority of queue 1 is greater than queue 2. queue 1 uses Round Robin (Time Quantum = 2) and 

queue 2 uses FCFS. 



Below is the gantt chart of the problem : 
 

 

 

 

At starting both queues have process so process in queue 1 (P1, P2) runs first (because of higher priority) 

in the round robin fashion and completes after 7 units then process in queue 2 (P3) starts running (as there 

is no process in queue 1) but while it is running P4 comes in queue 1 and interrupts P3 and start running 
for 5 second and after its completion P3 takes the CPU and completes its execution. 

Multilevel Feedback Queue Scheduling (MLFQ) CPU 

Scheduling 

his Scheduling is like Multilevel Queue(MLQ) Scheduling but in this process can move between the 

queues. Multilevel Feedback Queue Scheduling (MLFQ) keep analyzing the behavior (time of 

execution) of processes and according to which it changes its priority.Now, look at the diagram and 

explanation below to understand it properly. 

 

 

Well, above implementation may differ for example the last queue can also follow Round-robin 

Scheduling. 

Problems in the above implementation – A process in the lower priority queue can suffer from 

starvation due to some short processes taking all the CPU time. 

Solution – A simple solution can be to boost the priority of all the process after regular intervals 

and place them all in the highest priority queue. 

What is the need of such complex Scheduling? 

 Firstly, it is more flexible than the multilevel queue scheduling. 



 To optimize turnaround time algorithms like SJF is needed which require the running time 

of processes to schedule them. But the running time of the process is not known in advance. 

MFQS runs a process for a time quantum and then it can change its priority(if it is a long 

process). Thus it learns from past behavior of the process and then predicts its future 

behavior.This way it tries to run shorter process first thus optimizing turnaround time. 

 MFQS also reduces the response time. 

 Example – 
Consider a system which has a CPU bound process, which requires the burst time of 40 

seconds.The multilevel Feed Back Queue scheduling algorithm is used and the queue time 

quantum ‘2’ seconds and in each level it is incremented by ‘5’ seconds.Then how many 

times the process will be interrupted and on which queue the process will terminate the 

execution? 

 Solution – 
Process P needs 40 Seconds for total execution. 

At Queue 1 it is executed for 2 seconds and then interrupted and shifted to queue 2. 

At Queue 2 it is executed for 7 seconds and then interrupted and shifted to queue 3. 

At Queue 3 it is executed for 12 seconds and then interrupted and shifted to queue 4. 

At Queue 4 it is executed for 17 seconds and then interrupted and shifted to queue 5. 

At Queue 5 it executes for 2 seconds and then it completes. 

Hence the process is interrupted 4 times and completes on queue 5. 

 

Multiple-Processor Scheduling in Operating System 

In multiple-processor scheduling multiple CPU’s are available and hence Load Sharing becomes 

possible. However multiple processor scheduling is more complex as compared to single 

processor scheduling. In multiple processor scheduling there are cases when the processors are 

identical i.e. HOMOGENEOUS, in terms of their functionality, we can use any processor available 

to run any process in the queue. 

Approaches to Multiple-Processor Scheduling – 

One approach is when all the scheduling decisions and I/O processing are handled by a single 

processor which is called the Master Server and the other processors executes only the user code. 

This is simple and reduces the need of data sharing. This entire scenario is called Asymmetric 

Multiprocessing. 

A second approach uses Symmetric Multiprocessing where each processor is self scheduling. 

All processes may be in a common ready queue or each processor may have its own private queue 

for ready processes. The scheduling proceeds further by having the scheduler for each processor 

examine the ready queue and select a process to execute. 

Processor Affinity – 

Processor Affinity means a processes has an affinity for the processor on which it is currently 

running. 

When a process runs on a specific processor there are certain effects on the cache memory. The 

data most recently accessed by the process populate the cache for the processor and as a result 

successive memory access by the process are often satisfied in the cache memory. Now if the 

process migrates to another processor, the contents of the cache memory must be invalidated for 



the first processor and the cache for the second processor must be repopulated. Because of the high 

cost of invalidating and repopulating caches, most of the SMP(symmetric multiprocessing) 

systems try to avoid migration of processes from one processor to another and try to keep a process 

running on the same processor. This is known as PROCESSOR AFFINITY. 

There are two types of processor affinity: 

1. Soft Affinity – When an operating system has a policy of attempting to keep a process 

running on the same processor but not guaranteeing it will do so, this situation is called soft 

affinity. 

2. Hard Affinity – Some systems such as Linux also provide some system calls that support 

Hard Affinity which allows a process to migrate between processors. 

Load Balancing – 

Load Balancing is the phenomena which keeps the workload evenly distributed across all 

processors in an SMP system. Load balancing is necessary only on systems where each processor 

has its own private queue of process which are eligible to execute. Load balancing is unnecessary 

because once a processor becomes idle it immediately extracts a runnable process from the 

common run queue. On SMP(symmetric multiprocessing), it is important to keep the workload 

balanced among all processors to fully utilize the benefits of having more than one processor else 

one or more processor will sit idle while other processors have high workloads along with lists of 

processors awaiting the CPU. 

There are two general approaches to load balancing : 

1. Push Migration – In push migration a task routinely checks the load on each processor and 

if it finds an imbalance then it evenly distributes load on each processors by moving the 

processes from overloaded to idle or less busy processors. 

2. Pull Migration – Pull Migration occurs when an idle processor pulls a waiting task from a 

busy processor for its execution. 

Multicore Processors – 

In multicore processors multiple processor cores are places on the same physical chip. Each core 

has a register set to maintain its architectural state and thus appears to the operating system as a 

separate physical processor. SMP systems that use multicore processors are faster and 

consume less power than systems in which each processor has its own physical chip. 

However multicore processors may complicate the scheduling problems. When processor 

accesses memory then it spends a significant amount of time waiting for the data to become 

available. This situation is called MEMORY STALL. It occurs for various reasons such as cache 

miss, which is accessing the data that is not in the cache memory. In such cases the processor can 

spend upto fifty percent of its time waiting for data to become available from the memory. To 

solve this problem recent hardware designs have implemented multithreaded processor cores in 

which two or more hardware threads are assigned to each core. Therefore if one thread stalls while 

waiting for the memory, core can switch to another thread. 

There are two ways to multithread a processor : 

1. Coarse-Grained Multithreading – In coarse grained multithreading a thread executes on a 

processor until a long latency event such as a memory stall occurs, because of the delay 

caused by the long latency event, the processor must switch to another thread to begin 

execution. The cost of switching between threads is high as the instruction pipeline must be 



terminated before the other thread can begin execution on the processor core. Once this new 

thread begins execution it begins filling the pipeline with its instructions. 

2. Fine-Grained Multithreading – This multithreading switches between threads at a much 

finer level mainly at the boundary of an instruction cycle. The architectural design of fine 

grained systems include logic for thread switching and as a result the cost of switching 

between threads is small. 

Virtualization and Threading – 

In this type of multiple-processor scheduling even a single CPU system acts like a multiple-

processor system. In a system with Virtualization, the virtualization presents one or more virtual 

CPU’s to each of virtual machines running on the system and then schedules the use of physical 

CPU’S among the virtual machines. Most virtualized environments have one host operating system 

and many guest operating systems. The host operating system creates and manages the virtual 

machines and each virtual machine has a guest operating system installed and applications running 

within that guest.Each guest operating system may be assigned for specific use cases,applications, 

and users,including time sharing or even real-time operation. Any guest operating-system 

scheduling algorithm that assumes a certain amount of progress in a given amount of time will be 

negatively impacted by the virtualization. In a time sharing operating system that tries to allot 100 

milliseconds to each time slice to give users a reasonable response time. A given 100 millisecond 

time slice may take much more than 100 milliseconds of virtual CPU time. Depending on how 

busy the system is, the time slice may take a second or more which results in a very poor response 

time for users logged into that virtual machine. The net effect of such scheduling layering is that 

individual virtualized operating systems receive only a portion of the available CPU cycles, even 

though they believe they are receiving all cycles and that they are scheduling all of those 

cycles.Commonly, the time-of-day clocks in virtual machines are incorrect because timers take no 

longer to trigger than they would on dedicated CPU’s. 
 

 

Evaluation of Process Scheduling Algorithms 

In the section above we looked at various scheduling algorithms. But how do we decide 

which one to use? 

The first thing we need to decide is how we will evaluate the algorithms. To do this we 

need to decide on the relative importance of the factors we listed above (Fairness, 

Efficiency, Response Times, Turnaround and Throughput). Only once we have decided 

on our evaluation method can we carry out the evaluation. 

Deterministic Modeling 

This evaluation method takes a predetermined workload and evaluates each algorithm 

using that workload. 



Assume we are presented with the following processes, which all arrive at time zero. 

Process Burst Time 

P1 9 

P2 33 

P3 2 

P4 5 

P5 14 

Which of the following algorithms will perform best on this workload? 

First Come First Served (FCFS), Non Preemptive Shortest Job First (SJF) and Round 

Robin (RR). Assume a quantum of 8 milliseconds. 

Before looking at the answers, try to calculate the figures for each algorithm. 

The advantages of deterministic modeling is that it is exact and fast to compute. The 

disadvantage is that it is only applicable to the workload that you use to test. As an 

example, use the above workload but assume P1 only has a burst time of 8 milliseconds. 

What does this do to the average waiting time? 

Of course, the workload might be typical and scale up but generally deterministic 

modeling is too specific and requires too much knowledge about the workload. 

Queuing Models 

Another method of evaluating scheduling algorithms is to use queuing theory. Using 

data from real processes we can arrive at a probability distribution for the length of a 

burst time and the I/O times for a process. We can now generate these times with a 

certain distribution. 

We can also generate arrival times for processes (arrival time distribution). 

If we define a queue for the CPU and a queue for each I/O device we can test the various 

scheduling algorithms using queuing theory. 

Knowing the arrival rates and the service rates we can calculate various figures such as 

average queue length, average wait time, CPU utilization etc. 

One useful formula is Little's Formula. 

n = λw 

Where 

http://www.cs.nott.ac.uk/~pszgxk/courses/g53ops/Scheduling/sched13-answers.html


n is the average queue length 

λ is the average arrival rate for new processes (e.g. five a second) 

w is the average waiting time in the queue 

Knowing two of these values we can, obviously, calculate the third. For example, if we 

know that eight processes arrive every second and there are normally sixteen processes 

in the queue we can compute that the average waiting time per process is two seconds. 

The main disadvantage of using queuing models is that it is not always easy to define 

realistic distribution times and we have to make assumptions. This results in the model 

only being an approximation of what actually happens. 

Simulations 

Rather than using queuing models we simulate a computer. A Variable, representing a 

clock is incremented. At each increment the state of the simulation is updated. 

Statistics are gathered at each clock tick so that the system performance can be analysed. 

The data to drive the simulation can be generated in the same way as the queuing model, 

although this leads to similar problems. 

Alternatively, we can use trace data. This is data collected from real processes on real 

machines and is fed into the simulation. This can often provide good results and good 

comparisons over a range of scheduling algorithms. 

However, simulations can take a long time to run, can take a long time to implement 

and the trace data may be difficult to collect and require large amounts of storage. 

Implementation 

The best way to compare algorithms is to implement them on real machines. This will 

give the best results but does have a number of disadvantages. 

· It is expensive as the algorithm has to be written and then implemented on real 

hardware. 

· If typical workloads are to be monitored, the scheduling algorithm must be used in a 

live situation. Users may not be happy with an environment that is constantly changing. 

· If we find a scheduling algorithm that performs well there is no guarantee that this 

state will continue if the workload or environment changes. 

 

 

 



Algorithm Evaluation 

How do we select a CPU scheduling algorithm for a particular system? 

There are many scheduling algorithms, each with its own parameters. As a 

result, selecting an algorithm can be difficult. The first problem is defining the 

criteria to be used in selecting an algorithm. Criteria are often defined in 

terms of CPU utilization, response time, or throughput. To select an 

algorithm, we must first define the relative importance of these measures. 

Our criteria may include several measures, such as: 

 Maximizing CPU utilization under the constraint that the maximum 

response time is 1 second 

 Maximizing throughput such that turnaround time is (on average) 

linearly proportional to total execution time Once the selection criteria 

have been defined, we want to evaluate the algorithms under 

consideration.We next describe the various evaluation methods we can 

use. 

Deterministic Modeling 

One major class of evaluation methods is analytic evaluation. Analytic 

evaluation uses the given algorithm and the system workload to produce a 

formula or number that evaluates the performance of the algorithm for that 

workload. One type of analytic evaluation is deterministic modeling. This 

method takes a particular predetermined workload and defines the 

performance of each algorithm for that workload. For example, assume that 

we have the workload shown below. All five processes arrive at time 0, in the 

order given, with the length of the CPU burst given in milliseconds: 



 
 

 

 



 

 

 

Deterministic modeling is simple and fast. It gives us exact 
numbers, allowing us to compare the algorithms. However, it 
requires exact numbers for input, and its answers apply only 
to those cases. The main uses of deterministic modeling are 
in describing scheduling algorithms and providing examples. 

In cases where we are running the same program over and 
over again and can measure the program's processing 



requirements exactly, we may be able to use deterministic 
modeling to select a scheduling algorithm. Furthermore, over 
a set of examples, deterministic modeling may indicate trends 
that can then be analyzed and proved separately. 

For example, it can be shown that, for the environment 
described (all processes and their times available at time 0), 
the SJF policy will always result in the minimum waiting time. 

Queueing Models 

On many systems, the processes that are run vary from day 
to day, so there is no static set of processes (or times) to use 
for deterministic modeling. What can be determined, 
however, is the distribution of CPU and I/O bursts. These 
distributions can be measured and then approximated or 
simply estimated. The result is a mathematical formula 
describing the probability of a particular CPU burst. 
Commonly, this distribution is exponential and is described by 
its mean. Similarly, we can describe the distribution of times 
when processes arrive in the system (the arrival-time 
distribution). From these two distributions, it is possible to 
compute the average throughput, utilization, waiting time, 
and so on for most algorithms. The computer system is 
described as a network of servers. 

 Each server has a queue of waiting processes. The CPU is a 
server with its ready queue, as is the I/O system with its 
device queues. Knowing arrival rates and service rates, we 
can compute utilization, average queue length, average wait 
time, and so on. This area of study is called queueing-network 
analysis. As an example, let n be the average queue length 
(excluding the process being serviced), let W be the average 
waiting time in the queue, and let X be the average arrival 
rate for new processes in the queue (such as three processes 
per second). 

We expect that during the time W that a process waits, \ x W new processes 
will arrive in the queue. If the system is in a steady state, then the number of 
processes leaving the queue must be equal to the number of processes that 
arrive. Thus, This equation, known as Little's formula, is particularly useful 



because it is valid for any scheduling algorithm and arrival distribution. We 
can use Little's formula to compute one of the three variables, if we know 
the other two. 

For example, if we know that 7 processes arrive every second (on average), 
and that there are normally 14 processes in the queue, then we can compute 
the average waiting time per process as 2 seconds. Queueing analysis can be 
useful in comparing scheduling algorithms, but it also has limitations. At the 
moment, the classes of algorithms and distributions that can be handled are 
fairly limited. 

The mathematics of complicated algorithms and distributions can be difficult 
to work with. Thus, arrival and service distributions are often defined in 
mathematically tractable —but unrealistic—ways. It is also generally 
necessary to make a number of independent assumptions, which may not be 
accurate. As a result of these difficulties, queueing models are often only 
approximations of real systems, and the accuracy of the computed results 
may be questionable. 

Simulations 

To get a more accurate evaluation of scheduling algorithms, we can use 

simulations. Running simulations involves programming a model of the 

computer system. Software data structures represent the major components 

of the system. The simulator has a variable representing a clock; as this 

variable's value is increased, the simulator modifies the system state to 

reflect the activities of the devices, the processes, and the scheduler. As the 

simulation executes, statistics that indicate algorithm performance are 

gathered and printed. The data to drive the simulation can be generated in 

several ways. The most common method uses a random-number generator, 

which is programmed to generate processes, CPU burst times, arrivals, 

departures, and so on, according to probability distributions. 



 

 

The distributions can be defined mathematically (uniform, 
exponential, Poisson) or empirically. If a distribution is to be 
defined empirically, measurements of the actual system 
under study are taken. The results define the distribution of 
events in the real system; this distribution can then be used 
to drive the simulation. A distribution-driven simulation may 
be inaccurate, however, because of relationships between 
successive events in the real system. The frequency 
distribution indicates only how many instances of each event 
occur; it does not indicate anything about the order of their 
occurrence. 

 To correct this problem, we can use trace tapes. We create a 
trace tape by monitoring the real system and recording the 
sequence of actual events (Figure 5.15). We then use this 
sequence to drive the simulation. Trace tapes provide an 



excellent way to compare two algorithms on exactly the same 
set of real inputs. This method can produce accurate results 
for its inputs. 

Simulations can be expensive, often requiring hours of computer time. A 

more detailed simulation provides more accurate results, but it also requires 

more computer time. In addition, trace tapes can require large amounts of 

storage space. Finally, the design, coding, and debugging of the simulator 

can be a major task. 

Implementation Even a simulation is of limited accuracy. The only completely 

accurate way to evaluate a scheduling algorithm is to code it up, put it in the 

operating system, and see how it works. This approach puts the actual 

algorithm in the real system for evaluation under real operating conditions. 

The major difficulty with this approach is the high cost. 

The expense is incurred not only in coding the algorithm and modifying the 

operating system to support it (along with its required data structures) but 

also in the reaction of the users to a constantly changing operating system. 

Most users are not interested in building a better operating system; they 

merely want to get their processes executed and use their results. A 

constantly changing operating system does not help the users to get their 

work done. Another difficulty is that the environment in which the algorithm 

is used will change. 

The environment will change not only in the usual way, as new programs are 

written and the types of problems change, but also as a result of the 

performance of the scheduler. If short processes are given priority, then users 

may break larger processes into sets of smaller processes. If interactive 

processes are given priority over noninteractive processes, then users may 

switch to interactive use. For example, researchers designed one system that 

classified interactive and noninteractive processes automatically by looking 

at the amount of terminal I/O. 

 If a process did not input or output to the terminal in a 1-second interval, 

the process was classified as noninteractive and was moved to a lower-

priority queue. In response to this policy, one programmer modified his 

programs to write an arbitrary character to the terminal at regular intervals 

of less than 1 second. The system gave his programs a high priority, even 

though the terminal output was completely meaningless. The most flexible 

scheduling algorithms are those that can be altered by the system managers 



or by the users so that they can be tuned for a specific application or set of 

applications. For instance, a workstation that performs high-end graphical 

applications may have scheduling needs different from those of a web server 

or file server. 

Some operating systems— particularly several versions of UNIX—allow the 

system manager to fine-tune the scheduling parameters for a particular 

system configuration. For example, Solaris provides the dispadmin command 

to allow the system administrator to modify the parameters of the scheduling 

classes . Another approach is to use APIs that modify the priority of a process 

or thread. The Java, /POSIX, and /WinAPI/ provide such functions. The 

downfall of this approach is that performance tuning a system or application 

most often does not result in improved performance in more general 

situations. 
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