
PERATING SYSTEMS

 II B .TECH, II-SEM CSE

UNIT II

Process Concept: Process ,Process in memory ,Process States, PCB, Process Scheduling ,Context

Switching ,Process Schedulers, Process Creation ,Process Termination, Inter Process

Communication. Example IPC Systems, Communication in Client-Server Systems.

Threads: overview, Multicore Programming, Multithreading Models, Thread Libraries, Implicit

Threading, Threading Issues.

Process Synchronization: The critical-section problem, Peterson‗s Solution, Synchronization

Hardware, Mutex Locks, Semaphores, Classic problems of synchronization, Monitors,

Synchronization examples, Alternative approaches.

CPU Scheduling: Scheduling-Criteria, Scheduling Algorithms, Thread Scheduling, Multiple-

Processor Scheduling, Real-Time CPU Scheduling, Algorithm Evaluation.

Processes : Process Concept, Process Scheduling, Operations on Processes, Inter process

Communication, Examples of IPC Systems, Communication in Client-Server Systems

Process -- a program in execution, which forms the basis of all computation

1.15 Process Concept

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably

 Process – a program in execution; process execution must progress in sequential fashion

 A process includes:

 program counter

 stack

 data section

The Process

 Multiple parts

 The program code, also called text section

 Current activity including program counter, processor registers

 Stack containing temporary data

 Function parameters, return addresses, local variables

 Data section containing global variables

 Heap containing memory dynamically allocated during run time

 Program is passive entity, process is active

 Program becomes process when executable file loaded into memory

 Execution of program started via GUI mouse clicks, command line entry of its name, etc

 One program can be several processes

 Consider multiple users executing the same program

Process in Memory

Process State

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

Diagram of Process State

Process Control Block (PCB)

Information associated with each process

 Process state

 Program counter

 CPU registers

 CPU scheduling information

 Memory-management information

 Accounting information

 I/O status information

Process Control Block (PCB)

CPU Switch From Process to Process(CONTEXT-SWITCHING)

1.16 Process Scheduling

 Maximize CPU use, quickly switch processes onto CPU for time sharing

 Process scheduler selects among available processes for next execution on CPU

 Maintains scheduling queues of processes

 Job queue – set of all processes in the system

 Ready queue – set of all processes residing in main memory, ready and waiting to execute

 Device queues – set of processes waiting for an I/O device

 Processes migrate among the various queues

Process Representation in Linux

 Represented by the C structure

 task_struct

pid t pid; /* process identifier */

long state; /* state of the process */

unsigned int time slice /* scheduling information */ struct task struct *parent; /* this process’s parent

/ struct list head children; / this process’s children */ struct files struct *files; /* list of open files */

struct mm struct *mm; /* address space of this pro */

Ready Queue And Various I/O Device Queues

Representation of Process Scheduling

Schedulers

 Long-term scheduler (or job scheduler) – selects which processes should be brought into the ready

queue

 Short-term scheduler (or CPU scheduler) – selects which process should be executed next and

allocates CPU

 Sometimes the only scheduler in a system

 Short-term scheduler is invoked very frequently (milliseconds) (must be fast)

 Long-term scheduler is invoked very infrequently (seconds, minutes) (may be slow)

 The long-term scheduler controls the degree of multiprogramming

 Processes can be described as either:

 I/O-bound process – spends more time doing I/O than computations, many short CPU

bursts

 CPU-bound process – spends more time doing computations; few very long CPU bursts

Addition of Medium Term Scheduling

Context Switch

 When CPU switches to another process, the system must save the state of the old process and load

the saved state for the new process via a context switch.

 Context of a process represented in the PCB

 Context-switch time is overhead; the system does no useful work while switching

 The more complex the OS and the PCB -> longer the context switch

 Time dependent on hardware support

 Some hardware provides multiple sets of registers per CPU -> multiple contexts loaded at

once

1.17 Operations on Processes :

Process Creation

 Process Creation : Parent process create children processes, which, in turn create other processes,

forming a tree of processes

 Generally, process identified and managed via a process identifier (pid)

 Resource sharing

 Parent and children share all resources

 Children share subset of parent’s resources

 Parent and child share no resources

Execution

 Parent and children execute concurrently

 Parent waits until children terminate

 Address space

 Child duplicate of parent

 Child has a program loaded into it

 UNIX examples

 fork system call creates new process

 exec system call used after a fork to replace the process’ memory space with a new program

Process Creation

C Program Forking Separate Process

 #include <sys/types.h>

#include <studio.h>

#include <unistd.h>

int main()

{

pid_t pid;

 /* fork another process */

 pid = fork();

 if (pid < 0) { /* error occurred */

 fprintf(stderr, "Fork Failed");

 return 1;

 }

 else if (pid == 0) { /* child process */

 execlp("/bin/ls", "ls", NULL);

 }

 else { /* parent process */

 /* parent will wait for the child */

 wait (NULL);

 printf ("Child Complete");

 }

 return 0;

}

A Tree of Processes on Solaris

Process Termination

 Process executes last statement and asks the operating system to delete it (exit)

 Output data from child to parent (via wait)

 Process’ resources are deallocated by operating system

 Parent may terminate execution of children processes (abort)

 Child has exceeded allocated resources

 Task assigned to child is no longer required

 If parent is exiting

 Some operating system do not allow child to continue if its parent terminates

 All children terminated - cascading termination

1.18 Inter process Communication

 Processes within a system may be independent or cooperating

 Cooperating process can affect or be affected by other processes, including sharing data

 Reasons for cooperating processes:

 Information sharing

 Computation speedup

 Modularity

 Convenience

 Cooperating processes need interprocess communication (IPC)

 Two models of IPC

 Shared memory

 Message passing

Communications Models

Cooperating Processes

 Independent process cannot affect or be affected by the execution of another process

 Cooperating process can affect or be affected by the execution of another process

 Advantages of process cooperation

 Information sharing

 Computation speed-up

 Modularity

 Convenience

Producer-Consumer Problem

 Paradigm for cooperating processes, producer process produces information that is consumed by a

consumer process

 unbounded-buffer places no practical limit on the size of the buffer

 bounded-buffer assumes that there is a fixed buffer size

Bounded-Buffer

 Shared-Memory Solution

 Shared data

#define BUFFER_SIZE 10

typedef struct {

.

} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

 Solution is correct, but can only use BUFFER_SIZE-1 elements

Bounded-Buffer – Producer

while(true)

{

 /* Produce an item */

 while (((in = (in + 1) % BUFFER SIZE count) == out)

 ; /* do nothing -- no free buffers */

 buffer[in] = item;

 in = (in + 1) % BUFFER SIZE;

 }

Bounded Buffer – Consumer

while (true)

{

 while (in == out)

 ; // do nothing -- nothing to consume

 // remove an item from the buffer

 item = buffer[out];

 out = (out + 1) % BUFFER SIZE;

 return item;

 }

InterprocessCommunication –

Message Passing

 Mechanism for processes to communicate and to synchronize their actions

 Message system – processes communicate with each other without resorting to shared variables

 IPC facility provides two operations:

 send(message) – message size fixed or variable

 receive(message)

 If P and Q wish to communicate, they need to:

 establish a communication link between them

 exchange messages via send/receive

 Implementation of communication link

 physical (e.g., shared memory, hardware bus)

Implementation Questions

 How are links established?

 Can a link be associated with more than two processes?

 How many links can there be between every pair of communicating processes?

 What is the capacity of a link?

 Is the size of a message that the link can accommodate fixed or variable?

 Is a link unidirectional or bi-directional?

Direct Communication

 Processes must name each other explicitly:

 send (P, message) – send a message to process P

 receive(Q, message) – receive a message from process Q

 Properties of communication link

 Links are established automatically

 A link is associated with exactly one pair of communicating processes

 Between each pair there exists exactly one link

 The link may be unidirectional, but is usually bi-directional

Indirect Communication

 Messages are directed and received from mailboxes (also referred to as ports)

 Each mailbox has a unique id

 Processes can communicate only if they share a mailbox

 Properties of communication link

 Link established only if processes share a common mailbox

 A link may be associated with many processes

 Each pair of processes may share several communication links

 Link may be unidirectional or bi-directional

 Operations

 create a new mailbox

 send and receive messages through mailbox

 destroy a mailbox

 Primitives are defined as:

 send(A, message) – send a message to mailbox A

 receive(A, message) – receive a message from mailbox A

 Mailbox sharing

 P1, P2, and P3 share mailbox A

 P1, sends; P2 and P3 receive

 Who gets the message?

 Solutions

 Allow a link to be associated with at most two processes

 Allow only one process at a time to execute a receive operation

 Allow the system to select arbitrarily the receiver. Sender is notified who the receiver was.

Synchronization

 Message passing may be either blocking or non-blocking

 Blocking is considered synchronous

 Blocking send has the sender block until the message is received

 Blocking receive has the receiver block until a message is available

 Non-blocking is considered asynchronous

 Non-blocking send has the sender send the message and continue

 Non-blocking receive has the receiver receive a valid message or null

Buffering

 Queue of messages attached to the link; implemented in one of three ways

 1. Zero capacity – 0 messages

Sender must wait for receiver (rendezvous)

 2.Bounded capacity – finite length of n messages

Sender must wait if link full

 3.Unbounded capacity – infinite length

Sender never waits

1.19 Examples of IPC Systems - POSIX

 POSIX Shared Memory

 Process first creates shared memory segment

segment id = shmget(IPC PRIVATE, size, S IRUSR | S IWUSR);

 Process wanting access to that shared memory must attach to it

shared memory = (char *) shmat(id, NULL, 0);

 Now the process could write to the shared memory

sprintf(shared memory, "Writing to shared memory");

 When done a process can detach the shared memory from its address space

shmdt(shared memory);

Examples of IPC Systems – Mach

Mach communication is message based

 Even system calls are messages

 Each task gets two mailboxes at creation- Kernel and Notify

 Only three system calls needed for message transfer

msg_send(), msg_receive(), msg_rpc()

 Mailboxes needed for commuication, created via

 port_allocate()

Examples of IPC Systems – Windows XP

 Message-passing centric via local procedure call (LPC) facility

 Only works between processes on the same system

 Uses ports (like mailboxes) to establish and maintain communication channels

 Communication works as follows:

 The client opens a handle to the subsystem’s connection port object.

 The client sends a connection request.

 The server creates two private communication ports and returns the handle to one

of them to the client.

 The client and server use the corresponding port handle to send messages or

callbacks and to listen for replies.

Local Procedure Calls in Windows XP

1.20 Communications in Client-Server Systems

 Sockets

 Remote Procedure Calls

 Pipes

 Remote Method Invocation (Java)

Sockets

 A socket is defined as an endpoint for communication

 Concatenation of IP address and port

 The socket 161.25.19.8:1625 refers to port 1625 on host 161.25.19.8

 Communication consists between a pair of sockets

Socket Communication

Remote Procedure Calls

 Remote procedure call (RPC) abstracts procedure calls between processes on networked systems

 Stubs – client-side proxy for the actual procedure on the server

 The client-side stub locates the server and marshalls the parameters

 The server-side stub receives this message, unpacks the marshalled parameters, and performs the

procedure on the server

Execution of RPC

Pipes

 Acts as a conduit allowing two processes to communicate

 Issues

 Is communication unidirectional or bidirectional?

 In the case of two-way communication, is it half or full-duplex?

 Must there exist a relationship (i.e. parent-child) between the communicating processes?

 Can the pipes be used over a network?

Ordinary Pipes

 Ordinary Pipes allow communication in standard producer-consumer style

 Producer writes to one end (the write-end of the pipe)

 Consumer reads from the other end (the read-end of the pipe)

 Ordinary pipes are therefore unidirectional

 Require parent-child relationship between communicating processes

Ordinary Pipes

Named Pipes

 Named Pipes are more powerful than ordinary pipes
 Communication is bidirectional
 No parent-child relationship is necessary between the communicating processes
 Several processes can use the named pipe for communication
 Provided on both UNIX and Windows systems

CHAPTER-4 : Threads

4.1 Overview

 A thread is a basic unit of CPU utilization, consisting of a program counter, a
stack, and a set of registers, (and a thread ID.)

 Traditional (heavyweight) processes have a single thread of control - There is
one program counter, and one sequence of instructions that can be carried out
at any given time.

 As shown in Figure 4.1, multi-threaded applications have multiple threads
within a single process, each having their own program counter, stack and set
of registers, but sharing common code, data, and certain structures such as
open files.

Figure 4.1 - Single-threaded and multithreaded processes

4.1.1 Motivation

 Threads are very useful in modern programming whenever a process has
multiple tasks to perform independently of the others.

 This is particularly true when one of the tasks may block, and it is desired to
allow the other tasks to proceed without blocking.

 For example in a word processor, a background thread may check spelling and
grammar while a foreground thread processes user input (keystrokes), while

yet a third thread loads images from the hard drive, and a fourth does periodic
automatic backups of the file being edited.

 Another example is a web server - Multiple threads allow for multiple requests
to be satisfied simultaneously, without having to service requests sequentially
or to fork off separate processes for every incoming request. (The latter is how
this sort of thing was done before the concept of threads was developed. A
daemon would listen at a port, fork off a child for every incoming request to be
processed, and then go back to listening to the port.)

Figure 4.2 - Multithreaded server architecture

4.1.2 Benefits

 There are four major categories of benefits to multi-threading:
1. Responsiveness - One thread may provide rapid response while other

threads are blocked or slowed down doing intensive calculations.
2. Resource sharing - By default threads share common code, data, and

other resources, which allows multiple tasks to be performed
simultaneously in a single address space.

3. Economy - Creating and managing threads (and context switches
between them) is much faster than performing the same tasks for
processes.

4. Scalability, i.e. Utilization of multiprocessor architectures - A single
threaded process can only run on one CPU, no matter how many may be
available, whereas the execution of a multi-threaded application may be
split amongst available processors. (Note that single threaded processes
can still benefit from multi-processor architectures when there are
multiple processes contending for the CPU, i.e. when the load average is
above some certain threshold.)

4.2 Multicore Programming

 A recent trend in computer architecture is to produce chips with multiple cores,
or CPUs on a single chip.

 A multi-threaded application running on a traditional single-core chip would
have to interleave the threads, as shown in Figure 4.3. On a multi-core chip,
however, the threads could be spread across the available cores, allowing true
parallel processing, as shown in Figure 4.4.

Figure 4.3 - Concurrent execution on a single-core system.

Figure 4.4 - Parallel execution on a multicore system

 For operating systems, multi-core chips require new scheduling algorithms to
make better use of the multiple cores available.

 As multi-threading becomes more pervasive and more important (thousands
instead of tens of threads), CPUs have been developed to support more
simultaneous threads per core in hardware.

4.2.1 Programming Challenges

 For application programmers, there are five areas where multi-core chips
present new challenges:

1. Identifying tasks - Examining applications to find activities that can be
performed concurrently.

2. Balance - Finding tasks to run concurrently that provide equal value. I.e.
don't waste a thread on trivial tasks.

3. Data splitting - To prevent the threads from interfering with one
another.

4. Data dependency - If one task is dependent upon the results of another,
then the tasks need to be synchronized to assure access in the proper
order.

5. Testing and debugging - Inherently more difficult in parallel processing
situations, as the race conditions become much more complex and
difficult to identify.

4.2.2 Types of Parallelism

In theory there are two different ways to parallelize the workload:

1. Data parallelism divides the data up amongst multiple cores (threads), and
performs the same task on each subset of the data. For example dividing a large
image up into pieces and performing the same digital image processing on each
piece on different cores.

2. Task parallelism divides the different tasks to be performed among the
different cores and performs them simultaneously.

In practice no program is ever divided up solely by one or the other of these, but instead

by some sort of hybrid combination.

4.3 Multithreading Models

 There are two types of threads to be managed in a modern system: User
threads and kernel threads.

 User threads are supported above the kernel, without kernel support. These are
the threads that application programmers would put into their programs.

 Kernel threads are supported within the kernel of the OS itself. All modern OS
support kernel level threads, allowing the kernel to perform multiple
simultaneous tasks and/or to service multiple kernel system calls
simultaneously.

 In a specific implementation, the user threads must be mapped to kernel
threads, using one of the following strategies.

4.3.1 Many-To-One Model

 In the many-to-one model, many user-level threads are all mapped onto a single
kernel thread.

 Thread management is handled by the thread library in user space, which is very
efficient.

 However, if a blocking system call is made, then the entire process blocks, even
if the other user threads would otherwise be able to continue.

 Because a single kernel thread can operate only on a single CPU, the many-to-
one model does not allow individual processes to be split across multiple CPUs.

 Green threads for Solaris and GNU Portable Threads implement the many-to-
one model in the past, but few systems continue to do so today.

Figure 4.5 - Many-to-one model

4.3.2 One-To-One Model

 The one-to-one model creates a separate kernel thread to handle each user
thread.

 One-to-one model overcomes the problems listed above involving blocking
system calls and the splitting of processes across multiple CPUs.

 However the overhead of managing the one-to-one model is more significant,
involving more overhead and slowing down the system.

 Most implementations of this model place a limit on how many threads can be
created.

 Linux and Windows from 95 to XP implement the one-to-one model for threads.

Figure 4.6 - One-to-one model

4.3.3 Many-To-Many Model

 The many-to-many model multiplexes any number of user threads onto an
equal or smaller number of kernel threads, combining the best features of the
one-to-one and many-to-one models.

 Users have no restrictions on the number of threads created.
 Blocking kernel system calls do not block the entire process.
 Processes can be split across multiple processors.
 Individual processes may be allocated variable numbers of kernel threads,

depending on the number of CPUs present and other factors.

Figure 4.7 - Many-to-many model

 One popular variation of the many-to-many model is the two-tier model, which
allows either many-to-many or one-to-one operation.

 IRIX, HP-UX, and Tru64 UNIX use the two-tier model, as did Solaris prior to
Solaris 9.

Figure 4.8 - Two-level model

4.4 Thread Libraries

 Thread libraries provide programmers with an API for creating and managing
threads.

 Thread libraries may be implemented either in user space or in kernel space.
The former involves API functions implemented solely within user space, with
no kernel support. The latter involves system calls, and requires a kernel with
thread library support.

 There are three main thread libraries in use today:
1. POSIX Pthreads - may be provided as either a user or kernel library, as

an extension to the POSIX standard.
2. Win32 threads - provided as a kernel-level library on Windows systems.
3. Java threads - Since Java generally runs on a Java Virtual Machine, the

implementation of threads is based upon whatever OS and hardware the
JVM is running on, i.e. either Pthreads or Win32 threads depending on
the system.

 The following sections will demonstrate the use of threads in all three systems
for calculating the sum of integers from 0 to N in a separate thread, and storing
the result in a variable "sum".

4.4.1 Pthreads

 The POSIX standard (IEEE 1003.1c) defines the specification for Pthreads, not
the implementation.

 Pthreads are available on Solaris, Linux, Mac OSX, Tru64, and via public domain
shareware for Windows.

 Global variables are shared amongst all threads.
 One thread can wait for the others to rejoin before continuing.
 Pthreads begin execution in a specified function, in this example the runner()

function:

Figure 4.9

4.4.2 Windows Threads

 Similar to Pthreads. Examine the code example to see the differences, which
are mostly syntactic & nomenclature:

Figure 4.11

4.4.3 Java Threads

 ALL Java programs use Threads - even "common" single-threaded ones.
 The creation of new Threads requires Objects that implement the Runnable

Interface, which means they contain a method "public void run ()”. Any
descendant of the Thread class will naturally contain such a method. (In practice
the run () method must be overridden / provided for the thread to have any
practical functionality).

 Creating a Thread Object does not start the thread running - To do that the
program must call the Thread's "start ()" method. Start () allocates and
initializes memory for the Thread, and then calls the run () method.
(Programmers do not call run () directly.

 Because Java does not support global variables, Threads must be passed a
reference to a shared Object in order to share data, in this example the "Sum"
Object.

 Note that the JVM runs on top of a native OS, and that the JVM specification
does not specify what model to use for mapping Java threads to kernel threads.
This decision is JVM implementation dependant, and may be one-to-one, many-
to-many, or many to one. (On a UNIX system the JVM normally uses PThreads
and on a Windows system it normally uses windows threads.)

Figure 4.12

4.5 Implicit Threading

Shifts the burden of addressing the programming challenges outlined in section 4.2.1

above from the application programmer to the compiler and run-time libraries.

4.5.1 Thread Pools

 Creating new threads every time one is needed and then deleting it when it is
done can be inefficient, and can also lead to a very large (unlimited) number of
threads being created.

 An alternative solution is to create a number of threads when the process first
starts, and put those threads into a thread pool.

o Threads are allocated from the pool as needed, and returned to the pool
when no longer needed.

o When no threads are available in the pool, the process may have to wait
until one becomes available.

 The (maximum) number of threads available in a thread pool may be
determined by adjustable parameters, possibly dynamically in response to
changing system loads.

 Win32 provides thread pools through the "Pool Function" function. Java also
provides support for thread pools through the java.util.concurrent package, and
Apple supports thread pools under the Grand Central Dispatch architecture.

4.5.2 OpenMP

 OpenMP is a set of compiler directives available for C, C++, or FORTRAN
programs that instruct the compiler to automatically generate parallel code
where appropriate.

 For example, the directive:

 #pragma omp parallel

 {

 /* some parallel code here */

 }

Would cause the compiler to create as many threads as the machine has cores available

(e.g. 4 on a quad-core machine), and to run the parallel block of code, (known as

a parallel region) on each of the threads.

 Another sample directive is "#pragma omp parallel for", which causes the for
loop immediately following it to be parallelized, dividing the iterations up
amongst the available cores.

4.5.3 Grand Central Dispatch, GCD

 GCD is an extension to C and C++ available on Apple's OSX and iOS operating
systems to support parallelism.

 Similar to OpenMP, users of GCD define blocks of code to be executed either
serially or in parallel by placing a carat just before an opening curly brace, i.e.

{printf("I am a block.\n"); }

 GCD schedules blocks by placing them on one of several dispatch queues.
o Blocks placed on a serial queue are removed one by one. The next block

cannot be removed for scheduling until the previous block has
completed.

o There are three concurrent queues, corresponding roughly to low,
medium, or high priority. Blocks are also removed from these queues one
by one, but several may be removed and dispatched without waiting for
others to finish first, depending on the availability of threads.

 Internally GCD manages a pool of POSIX threads which may fluctuate in size
depending on load conditions.

4.5.4 Other Approaches

There are several other approaches available, including Microsoft's Threading Building

Blocks (TBB) and other products, and Java's util.concurrent package.

4.6 Threading Issues

4.6.1 The fork () and exec () System Calls

 Q: If one thread forks, is the entire process copied, or is the new process single-
threaded?

 A: System dependant.
 A: If the new process execs right away, there is no need to copy all the other

threads. If it doesn't, then the entire process should be copied.
 A: Many versions of UNIX provide multiple versions of the fork call for this

purpose.

4.6.2 Signal Handling

 Q: When a multi-threaded process receives a signal, to what thread should that
signal be delivered?

 A: There are four major options:
1. Deliver the signal to the thread to which the signal applies.
2. Deliver the signal to every thread in the process.

3. Deliver the signal to certain threads in the process.
4. Assign a specific thread to receive all signals in a process.

 The best choice may depend on which specific signal is involved.
 UNIX allows individual threads to indicate which signals they are accepting and

which they are ignoring. However the signal can only be delivered to one
thread, which is generally the first thread that is accepting that particular signal.

 UNIX provides two separate system calls, kill (pid, signal) and pthread_kill (tid,
signal), for delivering signals to processes or specific threads respectively.

 Windows does not support signals, but they can be emulated using
Asynchronous Procedure Calls (APCs). APCs are delivered to specific threads,
not processes.

4.6.3 Thread Cancellation

 Threads that are no longer needed may be cancelled by another thread in one
of two ways:

1. Asynchronous Cancellation cancels the thread immediately.
2. Deferred Cancellation sets a flag indicating the thread should cancel

itself when it is convenient. It is then up to the cancelled thread to check
this flag periodically and exit nicely when it sees the flag set.

 (Shared) resource allocation and inter-thread data transfers can be problematic
with asynchronous cancellation.

4.6.4 Thread-Local Storage (was 4.4.5 Thread-Specific Data)

 Most data is shared among threads, and this is one of the major benefits of
using threads in the first place.

 However sometimes threads need thread-specific data also.
 Most major thread libraries (PThreads, Win32, Java) provide support for

thread-specific data, known as thread-local storage or TLS. Note that this is
more like static data than local variables, because it does not cease to exist
when the function ends.

4.6.5 Scheduler Activations

 Many implementations of threads provide a virtual processor as an interface
between the user thread and the kernel thread, particularly for the many-to-
many or two-tier models.

 This virtual processor is known as a "Lightweight Process", LWP.
o There is a one-to-one correspondence between LWPs and kernel

threads.
o The number of kernel threads available, (and hence the number of LWPs

) may change dynamically.

o The application (user level thread library) maps user threads onto
available LWPs.

o Kernel threads are scheduled onto the real processor(s) by the OS.
o The kernel communicates to the user-level thread library when certain

events occur (such as a thread about to block) via an upcall, which is
handled in the thread library by an upcall handler. The upcall also
provides a new LWP for the upcall handler to run on, which it can then
use to reschedule the user thread that is about to become blocked. The
OS will also issue up calls when a thread becomes unblocked, so the
thread library can make appropriate adjustments.

 If the kernel thread blocks, then the LWP blocks, which blocks the user thread.
 Ideally there should be at least as many LWPs available as there could be

concurrently blocked kernel threads. Otherwise if all LWPs are blocked, then
user threads will have to wait for one to become available.

Figure 4.13 - Lightweight process (LWP)

4.7 Operating-System Examples

4.7.1 Windows XP Threads

 The Win32 API thread library supports the one-to-one thread model
 Win32 also provides the fiber library, which supports the many-to-many model.
 Win32 thread components include:

o Thread ID
o Registers
o A user stack used in user mode, and a kernel stack used in kernel mode.
o A private storage area used by various run-time libraries and dynamic link

libraries (DLLs).

 The key data structures for Windows threads are the ETHREAD (executive
thread block), KTHREAD (kernel thread block), and the TEB (thread
environment block). The ETHREAD and KTHREAD structures exist entirely
within kernel space, and hence are only accessible by the kernel, whereas the
TEB lies within user space, as illustrated in Figure 4.10:

Figure 4.14 - Data structures of a Windows thread

4.7.2 Linux Threads

 Linux does not distinguish between processes and threads - It uses the more
generic term "tasks".

 The traditional fork () system call completely duplicates a process (task), as
described earlier.

 An alternative system call, clone() allows for varying degrees of sharing
between the parent and child tasks, controlled by flags such as those shown in
the following table:

flag Meaning

CLONE_FS File-system information is shared

CLONE_VM The same memory space is shared

CLONE_SIGHAND Signal handlers are shared

CLONE_FILES The set of open files is shared

 Calling clone()with no flags set is equivalent to fork(). Calling clone() with
CLONE_FS, CLONE_VM, CLONE_SIGHAND, and CLONE_FILES is equivalent to
creating a thread, as all of these data structures will be shared.

 Linux implements this using a structure task_struct, which essentially provides
a level of indirection to task resources. When the flags are not set, then the
resources pointed to by the structure are copied, but if the flags are set, then
only the pointers to the resources are copied, and hence the resources are
shared. (Think of a deep copy versus a shallow copy in OO programming.)

 Several distributions of Linux now support the NPTL (Native POXIS Thread
Library)

o POSIX compliant.
o Support for SMP (symmetric multiprocessing), NUMA (non-uniform

memory access), and multicore processors.
o Support for hundreds to thousands of threads.

CHAPTER-5 : Process Synchronization

5.1 Background

 Recall that back in Chapter 3 we looked at cooperating processes (those that
can effect or be effected by other simultaneously running processes), and as
an example, we used the producer-consumer cooperating processes:

Producer code from chapter 3:

item nextProduced;

while(true) {

/* Produce an item and store it in nextProduced */

nextProduced = makeNewItem(. . .);

/* Wait for space to become available */

while(((in + 1) % BUFFER_SIZE) == out)

 ; /* Do nothing */

/* And then store the item and repeat the loop. */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

}

Consumer code from chapter 3:

item nextConsumed;

while(true) {

/* Wait for an item to become available */

while(in == out)

 ; /* Do nothing */

/* Get the next available item */

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

/* Consume the item in nextConsumed

 (Do something with it) */

}

 The only problem with the above code is that the maximum number of items
which can be placed into the buffer is BUFFER_SIZE - 1. One slot is unavailable
because there always has to be a gap between the producer and the consumer.

 We could try to overcome this deficiency by introducing a counter variable, as
shown in the following code segments:

 Unfortunately we have now introduced a new problem, because both the
producer and the consumer are adjusting the value of the variable counter,
which can lead to a condition known as a race condition. In this condition a
piece of code may or may not work correctly, depending on which of two
simultaneous processes executes first, and more importantly if one of the
processes gets interrupted such that the other process runs between important
steps of the first process. (Bank balance example discussed in class.)

 The particular problem above comes from the producer executing "counter++"
at the same time the consumer is executing "counter--". If one process gets part
way through making the update and then the other process butts in, the value
of counter can get left in an incorrect state.

 But, you might say, "Each of those are single instructions - How can they get
interrupted halfway through?" The answer is that although they are single
instructions in C++, they are actually three steps each at the hardware level: (1)
Fetch counter from memory into a register, (2) increment or decrement the
register, and (3) Store the new value of counter back to memory. If the
instructions from the two processes get interleaved, there could be serious
problems, such as illustrated by the following:

 Exercise: What would be the resulting value of counter if the order of
statements T4 and T5 were reversed? (What should the value of counter be
after one producer and one consumer, assuming the original value was 5?)

 Note that race conditions are notoriously difficult to identify and debug,
because by their very nature they only occur on rare occasions, and only when
the timing is just exactly right. (or wrong! :-)) Race conditions are also very
difficult to reproduce. :-(

 Obviously the solution is to only allow one process at a time to manipulate the
value "counter". This is a very common occurrence among cooperating
processes, so lets look at some ways in which this is done, as well as some classic
problems in this area.

A situation where several processes access and manipulate the same data
concurrently and the outcome of the execution depends on the particular order in
which the access takes place, is called a race condition

To guard against the race condition , it is to be ensured that only one process at a time
can be manipulating the variable counter and processes be synchronized in some
manner.

5.2 The Critical-Section Problem

 The producer-consumer problem described above is a specific example of a
more general situation known as the critical section problem. The general idea
is that in a number of cooperating processes, each has a critical section of code,
with the following conditions and terminologies:

o Only one process in the group can be allowed to execute in their critical
section at any one time. If one process is already executing their critical
section and another process wishes to do so, then the second process
must be made to wait until the first process has completed their critical
section work.

o The code preceding the critical section, and which controls access to the
critical section, is termed the entry section. It acts like a carefully
controlled locking door.

o The code following the critical section is termed the exit section. It
generally releases the lock on someone else's door, or at least lets the
world know that they are no longer in their critical section.

o The rest of the code not included in either the critical section or the entry
or exit sections is termed the remainder section.

Figure 5.1 - General structure of a typical process Pi

In a system of processes (P0, P1, P2…. Pn), each process has a segment of code

called a critical section, in which the process may be changing common

variables, updating a table, writing a file etc.

When one process is executing in its critical section, no other process is to be

allowed to execute in its critical section

Solution is to design a protocol that the processes can use to cooperate.

Implemented by following sections:

– Entry section- includes implementation of code to grant permission to a

process to enter its critical section.

– Exit section- follows the critical section.

– Remainder Section- remaining code of the protocol

 A solution to the critical section problem must satisfy the following three
conditions:

1. Mutual Exclusion - Only one process at a time can be executing in their
critical section.

2. Progress - If no process is currently executing in their critical section, and
one or more processes want to execute their critical section, then only
the processes not in their remainder sections can participate in the
decision, and the decision cannot be postponed indefinitely. (I.e.
processes cannot be blocked forever waiting to get into their critical
sections.)

3. Bounded Waiting - There exists a limit as to how many other processes
can get into their critical sections after a process requests entry into their

critical section and before that request is granted. (I.e. a process
requesting entry into their critical section will get a turn eventually, and
there is a limit as to how many other processes get to go first.)

 We assume that all processes proceed at a non-zero speed, but no assumptions
can be made regarding the relative speed of one process versus another.

 Kernel processes can also be subject to race conditions, which can be especially
problematic when updating commonly shared kernel data structures such as
open file tables or virtual memory management. Accordingly kernels can take
on one of two forms:

o Non-preemptive kernels do not allow processes to be interrupted while
in kernel mode. This eliminates the possibility of kernel-mode race
conditions, but requires kernel mode operations to complete very
quickly, and can be problematic for real-time systems, because timing
cannot be guaranteed.

o Preemptive kernels allow for real-time operations, but must be carefully
written to avoid race conditions. This can be especially tricky on SMP
systems, in which multiple kernel processes may be running
simultaneously on different processors.

Non-preemptive kernels include Windows XP, 2000, traditional UNIX, and Linux prior
to 2.6; Preemptive kernels include Linux 2.6 and later, and some commercial UNIXes
such as Solaris and IRIX.

5.3 Peterson's Solution

 Peterson's Solution is a classic software-based solution to the critical section
problem. It is unfortunately not guaranteed to work on modern hardware, due
to vagaries of load and store operations, but it illustrates a number of important
concepts.

 Peterson's solution is based on two processes, P0 and P1, which alternate
between their critical sections and remainder sections. For convenience of
discussion, "this" process is Pi, and the "other" process is Pj. (I.e. j = 1 - i)

 Peterson's solution requires two shared data items:
o int turn - Indicates whose turn it is to enter into the critical section. If

turn = = i, then process i is allowed into their critical section.
o boolean flag[2] - Indicates when a process wants to enter into their

critical section. When process i wants to enter their critical section, it sets
flag[i] to true.

 In the following diagram, the entry and exit sections are enclosed in boxes.
o In the entry section, process i first raises a flag indicating a desire to enter

the critical section.
o Then turn is set to j to allow the other process to enter their critical

section if process j so desires.

o The while loop is a busy loop (notice the semicolon at the end), which
makes process i wait as long as process j has the turn and wants to enter
the critical section.

o Process i lowers the flag[i] in the exit section, allowing process j to
continue if it has been waiting.

Figure 5.2 - The structure of process Pi in Peterson's solution.

 To prove that the solution is correct, we must examine the three conditions
listed above:

1. Mutual exclusion - If one process is executing their critical section when
the other wishes to do so, the second process will become blocked by
the flag of the first process. If both processes attempt to enter at the
same time, the last process to execute "turn = j" will be blocked.

2. Progress - Each process can only be blocked at the while if the other
process wants to use the critical section (flag[j] = = true), AND it is the
other process's turn to use the critical section (turn = = j). If both of those
conditions are true, then the other process (j) will be allowed to enter
the critical section, and upon exiting the critical section, will set flag[j]

to false, releasing process i. The shared variable turn assures that only
one process at a time can be blocked, and the flag variable allows one
process to release the other when exiting their critical section.

3. Bounded Waiting - As each process enters their entry section, they set
the turn variable to be the other processes turn. Since no process ever
sets it back to their own turn, this ensures that each process will have to
let the other process go first at most one time before it becomes their
turn again.

 Note that the instruction "turn = j" is atomic, that is it is a single machine
instruction which cannot be interrupted.

Properties followed by this solution:

1. Mutual Exclusion: This condition is followed, explained in above example.
2. Progress: It is definitely followed as whichever process needs critical section,

will make the INTERESTED value as true.
3. Bounded Waiting: This property is also followed as whichever process can make

the TURN variable first, will get into critical section.
4. Platform Neutrality: yes because the solution is in user mode.

Disadvantage:

1. This solution works for 2 processes, but this solution is best scheme in user
mode for critical section.

2. This is also a busy waiting solution so CPU time is wasted. And because of that
“SPIN LOCK” problem can come. And this problem can come in any of the busy
waiting solution.

5.4 Synchronization Hardware

 To generalize the solution(s) expressed above, each process when entering
their critical section must set some sort of lock, to prevent other processes from
entering their critical sections simultaneously, and must release the lock when
exiting their critical section, to allow other processes to proceed. Obviously it
must be possible to attain the lock only when no other process has already set
a lock. Specific implementations of this general procedure can get quite
complicated, and may include hardware solutions as outlined in this section.

 One simple solution to the critical section problem is to simply prevent a
process from being interrupted while in their critical section, which is the
approach taken by non preemptive kernels. Unfortunately this does not work

well in multiprocessor environments, due to the difficulties in disabling and the
re-enabling interrupts on all processors. There is also a question as to how this
approach affects timing if the clock interrupt is disabled.

 Another approach is for hardware to provide certain atomic operations. These
operations are guaranteed to operate as a single instruction, without
interruption. One such operation is the "Test and Set", which simultaneously
sets a boolean lock variable and returns its previous value, as shown in Figures
5.3 and 5.4:

Figures 5.3 and 5.4 illustrate "test_and_set()" function

 Another variation on the test-and-set is an atomic swap of two booleans, as
shown in Figures 5.5 and 5.6:

 The above examples satisfy the mutual exclusion requirement, but
unfortunately do not guarantee bounded waiting. If there are multiple
processes trying to get into their critical sections, there is no guarantee of what
order they will enter, and any one process could have the bad luck to wait
forever until they got their turn in the critical section. (Since there is no
guarantee as to the relative rates of the processes, a very fast process could
theoretically release the lock, whip through their remainder section, and re-lock
the lock before a slower process got a chance. As more and more processes are
involved vying for the same resource, the odds of a slow process getting locked
out completely increase.)

 Figure 5.7 illustrates a solution using test-and-set that does satisfy this
requirement, using two shared data structures, boolean

lock and boolean waiting[N], where N is the number of processes
in contention for critical sections:

Figure 5.7 Bounded-waiting mutual exclusion with TestAndSet().

 The key feature of the above algorithm is that a process blocks on the AND of
the critical section being locked and that this process is in the waiting state.
When exiting a critical section, the exiting process does not just unlock the
critical section and let the other processes have a free-for-all trying to get in.
Rather it first looks in an orderly progression (starting with the next process on
the list) for a process that has been waiting, and if it finds one, then it releases
that particular process from its waiting state, without unlocking the critical
section, thereby allowing a specific process into the critical section while
continuing to block all the others. Only if there are no other processes currently
waiting is the general lock removed, allowing the next process to come along
access to the critical section.

 Unfortunately, hardware level locks are especially difficult to implement in
multi-processor architectures. Discussion of such issues is left to books on
advanced computer architecture.

5.5 Mutex Locks

 The hardware solutions presented above are often difficult for ordinary
programmers to access, particularly on multi-processor machines, and
particularly because they are often platform-dependent.

 Therefore most systems offer a software API equivalent called mutex locks or
simply mutexes. (For mutual exclusion)

 The terminology when using mutexes is to acquire a lock prior to entering a
critical section, and to release it when exiting, as shown in Figure 5.8:

Figure 5.8 - Solution to the critical-section problem using mutex locks

 Just as with hardware locks, the acquire step will block the process if the lock is
in use by another process, and both the acquire and release operations are
atomic.

 Acquire and release can be implemented as shown here, based on a boolean
variable "available":

 One problem with the implementation shown here, (and in the hardware
solutions presented earlier), is the busy loop used to block processes in the
acquire phase. These types of locks are referred to as spinlocks, because the
CPU just sits and spins while blocking the process.

 Spinlocks are wasteful of cpu cycles, and are a really bad idea on single-cpu
single-threaded machines, because the spinlock blocks the entire computer,
and doesn't allow any other process to release the lock. (Until the scheduler
kicks the spinning process off of the cpu.)

 On the other hand, spinlocks do not incur the overhead of a context switch, so
they are effectively used on multi-threaded machines when it is expected that
the lock will be released after a short time.

5.6 Semaphores

 A more robust alternative to simple mutexes is to use semaphores, which are
integer variables for which only two (atomic) operations are defined, the wait
and signal operations, as shown in the following figure.

 Note that not only must the variable-changing steps (S-- and S++) be indivisible,
it is also necessary that for the wait operation when the test proves false that
there be no interruptions before S gets decremented. It IS okay, however, for
the busy loop to be interrupted when the test is true, which prevents the system
from hanging forever.

5.6.1 Semaphore Usage

 In practice, semaphores can take on one of two forms:
o Binary semaphores can take on one of two values, 0 or 1. They can be

used to solve the critical section problem as described above, and can be
used as mutexes on systems that do not provide a separate mutex
mechanism.. The use of mutexes for this purpose is shown in Figure 6.9 (
from the 8th edition) below.

Mutual-exclusion implementation with semaphores. (From 8th edition.)

o Counting semaphores can take on any integer value, and are usually
used to count the number remaining of some limited resource. The
counter is initialized to the number of such resources available in the
system, and whenever the counting semaphore is greater than zero, then

a process can enter a critical section and use one of the resources. When
the counter gets to zero (or negative in some implementations), then
the process blocks until another process frees up a resource and
increments the counting semaphore with a signal call. (The binary
semaphore can be seen as just a special case where the number of
resources initially available is just one.)

o Semaphores can also be used to synchronize certain operations between
processes. For example, suppose it is important that process P1 execute
statement S1 before process P2 executes statement S2.

 First we create a semaphore named synch that is shared by the
two processes, and initialize it to zero.

 Then in process P1 we insert the code:

S1;

signal(synch);

 and in process P2 we insert the code:

wait(synch);

S2;

 Because synch was initialized to 0, process P2 will block on the
wait until after P1 executes the call to signal.

5.6.2 Semaphore Implementation

 The big problem with semaphores as described above is the busy loop in the
wait call, which consumes CPU cycles without doing any useful work. This type
of lock is known as a spinlock, because the lock just sits there and spins while it
waits. While this is generally a bad thing, it does have the advantage of not
invoking context switches, and so it is sometimes used in multi-processing
systems when the wait time is expected to be short - One thread spins on one
processor while another completes their critical section on another processor.

 An alternative approach is to block a process when it is forced to wait for an
available semaphore, and swap it out of the CPU. In this implementation each
semaphore needs to maintain a list of processes that are blocked waiting for it,
so that one of the processes can be woken up and swapped back in when the
semaphore becomes available. (Whether it gets swapped back into the CPU
immediately or whether it needs to hang out in the ready queue for a while is a
scheduling problem.)

 The new definition of a semaphore and the corresponding wait and signal
operations are shown as follows:

 Note that in this implementation the value of the semaphore can actually
become negative, in which case its magnitude is the number of processes
waiting for that semaphore. This is a result of decrementing the counter before
checking its value.

 Key to the success of semaphores is that the wait and signal operations be
atomic, that is no other process can execute a wait or signal on the same
semaphore at the same time. (Other processes could be allowed to do other
things, including working with other semaphores, they just can't have access
to this semaphore.) On single processors this can be implemented by disabling
interrupts during the execution of wait and signal; Multiprocessor systems have
to use more complex methods, including the use of spinlocking.

5.6.3 Deadlocks and Starvation

 One important problem that can arise when using semaphores to block
processes waiting for a limited resource is the problem of deadlocks, which
occur when multiple processes are blocked, each waiting for a resource that can
only be freed by one of the other (blocked) processes, as illustrated in the
following example. (Deadlocks are covered more completely in chapter 7.)

 Another problem to consider is that of starvation, in which one or more
processes gets blocked forever, and never get a chance to take their turn in the
critical section. For example, in the semaphores above, we did not specify the
algorithms for adding processes to the waiting queue in the semaphore in the
wait() call, or selecting one to be removed from the queue in the signal() call.
If the method chosen is a FIFO queue, then every process will eventually get
their turn, but if a LIFO queue is implemented instead, then the first process to
start waiting could starve.

5.6.4 Priority Inversion

 A challenging scheduling problem arises when a high-priority process gets
blocked waiting for a resource that is currently held by a low-priority process.

 If the low-priority process gets pre-empted by one or more medium-priority
processes, then the high-priority process is essentially made to wait for the
medium priority processes to finish before the low-priority process can release
the needed resource, causing a priority inversion. If there are enough medium-
priority processes, then the high-priority process may be forced to wait for a
very long time.

 One solution is a priority-inheritance protocol, in which a low-priority process
holding a resource for which a high-priority process is waiting will temporarily

inherit the high priority from the waiting process. This prevents the medium-
priority processes from preempting the low-priority process until it releases the
resource, blocking the priority inversion problem.

 The book has an interesting discussion of how a priority inversion almost
doomed the Mars Pathfinder mission, and how the problem was solved when
the priority inversion was stopped. Full details are available online

5.7 Classic Problems of Synchronization

The following classic problems are used to test virtually every new proposed

synchronization algorithm.

5.7.1 The Bounded-Buffer Problem

 This is a generalization of the producer-consumer problem wherein access is
controlled to a shared group of buffers of a limited size.

 In this solution, the two counting semaphores "full" and "empty" keep track of
the current number of full and empty buffers respectively (and initialized to 0
and N respectively.) The binary semaphore mutex controls access to the critical
section. The producer and consumer processes are nearly identical - One can
think of the producer as producing full buffers, and the consumer producing
empty buffers.

Figures 5.9 and 5.10 use variables next_produced and next_consumed

5.7.2 The Readers-Writers Problem

 In the readers-writers problem there are some processes (termed readers)
who only read the shared data, and never change it, and there are other
processes (termed writers) who may change the data in addition to or instead

of reading it. There is no limit to how many readers can access the data
simultaneously, but when a writer accesses the data, it needs exclusive access.

 There are several variations to the readers-writers problem, most centered
around relative priorities of readers versus writers.

o The first readers-writers problem gives priority to readers. In this
problem, if a reader wants access to the data, and there is not already a
writer accessing it, then access is granted to the reader. A solution to this
problem can lead to starvation of the writers, as there could always be
more readers coming along to access the data. (A steady stream of
readers will jump ahead of waiting writers as long as there is currently
already another reader accessing the data, because the writer is forced
to wait until the data is idle, which may never happen if there are enough
readers.)

o The second readers-writers problem gives priority to the writers. In this
problem, when a writer wants access to the data it jumps to the head of
the queue - All waiting readers are blocked, and the writer gets access to
the data as soon as it becomes available. In this solution the readers may
be starved by a steady stream of writers.

 The following code is an example of the first readers-writers problem, and
involves an important counter and two binary semaphores:

o readcount is used by the reader processes, to count the number of
readers currently accessing the data.

o mutex is a semaphore used only by the readers for controlled access

to readcount.

o rw_mutex is a semaphore used to block and release the writers. The
first reader to access the data will set this lock and the last reader to exit

will release it; The remaining readers do not touch rw_mutex. (Eighth

edition called this variable wrt.)

o Note that the first reader to come along will block on rw_mutex if there
is currently a writer accessing the data, and that all following readers will

only block on mutex for their turn to increment readcount.

 Some hardware implementations provide specific reader-writer locks, which
are accessed using an argument specifying whether access is requested for
reading or writing. The use of reader-writer locks is beneficial for situation in
which: (1) processes can be easily identified as either readers or writers, and (2)
there are significantly more readers than writers, making the additional
overhead of the reader-writer lock pay off in terms of increased concurrency of
the readers.

5.7.3 The Dining-Philosophers Problem

 The dining philosophers problem is a classic synchronization problem involving
the allocation of limited resources amongst a group of processes in a deadlock-
free and starvation-free manner:

o Consider five philosophers sitting around a table, in which there are five
chopsticks evenly distributed and an endless bowl of rice in the center,
as shown in the diagram below. (There is exactly one chopstick between
each pair of dining philosophers.)

o These philosophers spend their lives alternating between two activities:
eating and thinking.

o When it is time for a philosopher to eat, it must first acquire two
chopsticks - one from their left and one from their right.

o When a philosopher thinks, it puts down both chopsticks in their original
locations.

Figure 5.13 - The situation of the dining philosophers

 One possible solution, as shown in the following code section, is to use a set of
five semaphores (chopsticks[5]), and to have each hungry philosopher first
wait on their left chopstick (chopsticks[i]), and then wait on their right
chopstick (chopsticks[(i + 1) % 5])

 But suppose that all five philosophers get hungry at the same time, and each
starts by picking up their left chopstick. They then look for their right chopstick,
but because it is unavailable, they wait for it, forever, and eventually all the
philosophers starve due to the resulting deadlock.

Figure 5.14 - The structure of philosopher i.

 Some potential solutions to the problem include:
o Only allow four philosophers to dine at the same time. (Limited

simultaneous processes.)
o Allow philosophers to pick up chopsticks only when both are available, in

a critical section. (All or nothing allocation of critical resources.)
o Use an asymmetric solution, in which odd philosophers pick up their left

chopstick first and even philosophers pick up their right chopstick first. (
Will this solution always work? What if there are an even number of
philosophers?)

 Note carefully that a deadlock-free solution to the dining philosophers problem
does not necessarily guarantee a starvation-free one. (While some or even
most of the philosophers may be able to get on with their normal lives of eating
and thinking, there may be one unlucky soul who never seems to be able to get
both chopsticks at the same time. :

 (OR)

Classical Problems of Synchronization

1. Bounded Buffer (Producer-Consumer) Problem

2. Dining Philosophers Problem

3. The Readers Writers Problem

Bounded Buffer Problem
Bounded buffer problem, which is also called producer consumer
problem, is one of the classic problems of synchronization. Let's
start by understanding the problem here, before moving on to the
solution and program code.

What is the Problem Statement?

There is a buffer of n slots and each slot is capable of storing one

unit of data. There are two processes running,
namely, producer and consumer, which are operating on the
buffer.

Bounded Buffer Problem

A producer tries to insert data into an empty slot of the buffer. A
consumer tries to remove data from a filled slot in the buffer. As
you might have guessed by now, those two processes won't
produce the expected output if they are being executed
concurrently.
There needs to be a way to make the producer and consumer work
in an independent manner.

Solution

One solution of this problem is to use semaphores. The
semaphores which will be used here are:

 mutex, a binary semaphore which is used to acquire and

release the lock.initial value is 1.

 empty, a counting semaphore whose initial value is the

number of slots in the buffer, since, initially all slots are empty.

 full, a counting semaphore whose initial value is 0.

At any instant, the current value of empty represents the number of
empty slots in the buffer and full represents the number of occupied
slots in the buffer.

The Producer Operation

The pseudocode of the producer function looks like this:

do
{
 // wait until empty > 0 and then
decrement 'empty'
 wait(empty);
 // acquire lock
 wait(mutex);

 /* perform the insert operation in a slot
*/
 // release lock
 signal(mutex);
 // increment 'full'
 signal(full);
}

 Looking at the above code for a producer, we can see that a

producer first waits until there is atleast one empty slot.

 Then it decrements the empty semaphore because, there will

now be one less empty slot, since the producer is going to

insert data in one of those slots.

 Then, it acquires lock on the buffer, so that the consumer

cannot access the buffer until producer completes its

operation.

 After performing the insert operation, the lock is released and

the value of full is incremented because the producer has just

filled a slot in the buffer.

The Consumer Operation

The pseudocode for the consumer function looks like this:

do

{

 // wait until full > 0 and then decrement 'full'

 wait(full);

 // acquire the lock

 wait(mutex);

 /* perform the remove operation in a slot */

 // release the lock

 signal(mutex);

 // increment 'empty'

 signal(empty);

}

while(TRUE);

 The consumer waits until there is atleast one full slot in the

buffer.

 Then it decrements the full semaphore because the number

of occupied slots will be decreased by one, after the consumer

completes its operation.

 After that, the consumer acquires lock on the buffer.

 Following that, the consumer completes the removal

operation so that the data from one of the full slots is removed.

 Then, the consumer releases the lock.

 Finally, the empty semaphore is incremented by 1, because

the consumer has just removed data from an occupied slot,

thus making it empty.

Dining Philosophers Problem

The dining philosophers problem is another classic synchronization
problem which is used to evaluate situations where there is a need
of allocating multiple resources to multiple processes.

What is the Problem Statement?

Consider there are five philosophers sitting around a circular dining
table. The dining table has five chopsticks and a bowl of rice in the
middle as shown in the below figure.

 There is one chopstick between each philosopher
 A philosopher must pick up its two nearest chopsticks in order

to eat
 A philosopher must pick up first one chopstick, then the second

one, not both at once
At any instant, a philosopher is either eating or thinking. When a

philosopher wants to eat, he uses two chopsticks - one from their

left and one from their right. When a philosopher wants to think, he

keeps down both chopsticks at their original place.

Here's the Solution

From the problem statement, it is clear that a philosopher can think
for an indefinite amount of time. But when a philosopher starts
eating, he has to stop at some point of time. The philosopher is in
an endless cycle of thinking and eating.

An array of five semaphores, stick[5], for each of the five

chopsticks. The code for each philosopher looks like:

while(TRUE)

{

 wait(stick[i]);

 /*

 mod is used because if i=5, next

 chopstick is 1 (dining table is circular)

 */

 wait(stick[(i+1) % 5]);

 /* eat */

 signal(stick[i]);

 signal(stick[(i+1) % 5]);

 /* think */}

When a philosopher wants to eat the rice, he will wait for the
chopstick at his left and picks up that chopstick. Then he waits for
the right chopstick to be available, and then picks it too. After
eating, he puts both the chopsticks down.

But if all five philosophers are hungry simultaneously, and each of
them pickup one chopstick, then a deadlock situation occurs
because they will be waiting for another chopstick forever. The
possible solutions for this are:

 A philosopher must be allowed to pick up the chopsticks only

if both the left and right chopsticks are available.

 Allow only four philosophers to sit at the table. That way, if all

the four philosophers pick up four chopsticks, there will be one

chopstick left on the table. So, one philosopher can start

eating and eventually, two chopsticks will be available. In this

way, deadlocks can be avoided.

Readers Writer Problem
 Readers writer problem is another example of a classic

synchronization problem. There are many variants of this problem, one
of which is examined below.

 The Problem Statement
 There is a shared resource which should be accessed by multiple

processes. There are two types of processes in this context. They
are reader and writer. Any number of readers can read from the
shared resource simultaneously, but only one writer can write to the
shared resource. When a writer is writing data to the resource, no
other process can access the resource. A writer cannot write to the
resource if there are non zero number of readers accessing the
resource at that time.

 The Solution

 From the above problem statement, it is evident that readers have
higher priority than writer. If a writer wants to write to the resource, it
must wait until there are no readers currently accessing that resource.

 Here, we use one mutex m and a semaphore w. An integer

variable read_count is used to maintain the number of readers

currently accessing the resource. The variable read_count is

initialized to 0. A value of 1 is given initially to m and w.

 Instead of having the process to acquire lock on the shared resource,
we use the mutex m to make the process to acquire and release lock

whenever it is updating the read_count variable.

The code for the writer process looks like this:

while(TRUE)
{
 wait(w);

 /* perform the write operation */

 signal(w);
}

And, the code for the reader process looks like this:

while(TRUE)

{

 //acquire lock

 wait(m);

 read_count++;

 if(read_count == 1)

 wait(w);

 //release lock

 signal(m);

 /* perform the reading operation */

 // acquire lock

 wait(m);

 read_count--;

 if(read_count == 0)

 signal(w);

 // release lock

 signal(m);

}

Here is the Code uncoded(explained)

 As seen above in the code for the writer, the writer just waits on

the w semaphore until it gets a chance to write to the resource.

 After performing the write operation, it increments w so that the next

writer can access the resource.

 On the other hand, in the code for the reader, the lock is acquired

whenever the read_count is updated by a process.
 When a reader wants to access the resource, first it increments

the read_countvalue, then accesses the resource and then
decrements the read_count value.

 The semaphore w is used by the first reader which enters the critical

section and the last reader which exits the critical section.

 The reason for this is, when the first readers enters the critical section,

the writer is blocked from the resource. Only new readers can access

the resource now.

 Similarly, when the last reader exits the critical section, it signals the

writer using the w semaphore because there are zero readers now and

a writer can have the chance to access the resource.

5.8 Monitors

 Semaphores can be very useful for solving concurrency problems, but only if
programmers use them properly. If even one process fails to abide by the
proper use of semaphores, either accidentally or deliberately, then the whole
system breaks down. (And since concurrency problems are by definition rare
events, the problem code may easily go unnoticed and/or be heinous to debug.
)

 For this reason a higher-level language construct has been developed,
called monitors.

5.8.1 Monitor Usage

 Monitor is a programming language construct that controls access to shared
data
 synchronization code added by the compiler
 synchronization enforced by the runtime

 Monitor is an abstract data type (ADT) that encapsulates
shared data structures
procedures that operate on the shared data structures
synchronization between the concurrent procedure invocations

 Protects the shared data structures inside the monitor from outside access.
 Guarantees that monitor procedures (or operations) can only legitimately

update the shared data.
 A monitor is essentially a class, in which all data is private, and with the special

restriction that only one method within any given monitor object may be active
at the same time. An additional restriction is that monitor methods may only
access the shared data within the monitor and any data passed to them as
parameters. I.e. they cannot access any data external to the monitor.

Figure 5.15 - Syntax of a monitor.

 Figure 5.16 shows a schematic of a monitor, with an entry queue of processes
waiting their turn to execute monitor operations (methods).

Figure 5.16 - Schematic view of a monitor

 In order to fully realize the potential of monitors, we need to introduce one
additional new data type, known as a condition.

o A variable of type condition has only two legal
operations, wait and signal. I.e. if X was defined as type condition, then
legal operations would be X.wait() and X.signal()

o The wait operation blocks a process until some other process calls signal,
and adds the blocked process onto a list associated with that condition.

o The signal process does nothing if there are no processes waiting on that
condition. Otherwise it wakes up exactly one process from the
condition's list of waiting processes. (Contrast this with counting
semaphores, which always affect the semaphore on a signal call.)

 Figure 6.18 below illustrates a monitor that includes condition variables within
its data space. Note that the condition variables, along with the list of processes
currently waiting for the conditions, are in the data space of the monitor - The
processes on these lists are not "in" the monitor, in the sense that they are not
executing any code in the monitor.

Figure 5.17 - Monitor with condition variables

 But now there is a potential problem - If process P within the monitor issues a
signal that would wake up process Q also within the monitor, then there would
be two processes running simultaneously within the monitor, violating the
exclusion requirement. Accordingly there are two possible solutions to this
dilemma:

Signal and wait - When process P issues the signal to wake up process Q, P then waits,

either for Q to leave the monitor or on some other condition.

Signal and continue - When P issues the signal, Q waits, either for P to exit the monitor

or for some other condition.

There are arguments for and against either choice. Concurrent Pascal offers a third

alternative - The signal call causes the signaling process to immediately exit the

monitor, so that the waiting process can then wake up and proceed.

 Java and C# (C sharp) offer monitors bulit-in to the language. Erlang offers
similar but different constructs.

Bounded Buffer Using Monitors

Monitor bounded_buffer {

 Resource buffer[N];

 // condition variables

 Condition empty, full;

 void producer (Resource R) {

 while (buffer full)

 empty.wait();

 // add R to buffer array

 full.signal();

 }

Void consumer () {

 while (buffer empty)

 full.wait();

 // get Resource from buffer

 empty.signal();

 return R;

 }

} // end monitor

5.8.2 Dining-Philosophers Solution Using Monitors

 This solution to the dining philosophers uses monitors, and the restriction that
a philosopher may only pick up chopsticks when both are available. There are
also two key data structures in use in this solution:

1. enum { THINKING, HUNGRY,EATING } state[5]; A

philosopher may only set their state to eating when neither of their
adjacent neighbors is eating. (state[(i + 1) % 5] != EATING &&
state[(i + 4) % 5] != EATING).

2. condition self[5]; This condition is used to delay a hungry

philosopher who is unable to acquire chopsticks.

 In the following solution philosophers share a monitor, DiningPhilosophers, and
eat using the following sequence of operations:

1. DiningPhilosophers.pickup() - Acquires chopsticks, which may block the
process.

2. eat
3. DiningPhilosophers.putdown() - Releases the chopsticks.

5.8.3 Implementing a Monitor Using Semaphores

 One possible implementation of a monitor uses a semaphore "mutex" to
control mutual exclusionary access to the monitor, and a counting semaphore

"next" on which processes can suspend themselves after they are already
"inside" the monitor (in conjunction with condition variables, see below.) The
integer next_count keeps track of how many processes are waiting in the next
queue. Externally accessible monitor processes are then implemented as:

 Condition variables can be implemented using semaphores as well. For a
condition x, a semaphore "x_sem" and an integer "x_count" are introduced,
both initialized to zero. The wait and signal methods are then implemented as
follows. (This approach to the condition implements the signal-and-wait option
described above for ensuring that only one process at a time is active inside the
monitor.)

5.8.4 Resuming Processes Within a Monitor

 When there are multiple processes waiting on the same condition within a
monitor, how does one decide which one to wake up in response to a signal on
that condition? One obvious approach is FCFS, and this may be suitable in many
cases.

 Another alternative is to assign (integer) priorities, and to wake up the process
with the smallest (best) priority.

 Figure 5.19 illustrates the use of such a condition within a monitor used for
resource allocation. Processes wishing to access this resource must specify the
time they expect to use it using the acquire(time) method, and must call the
release() method when they are done with the resource.

Figure 5.19 - A monitor to allocate a single resource.

 Unfortunately the use of monitors to restrict access to resources still only works
if programmers make the requisite acquire and release calls properly. One
option would be to place the resource allocation code into the monitor, thereby
eliminating the option for programmers to bypass or ignore the monitor, but
then that would substitute the monitor's scheduling algorithms for whatever
other scheduling algorithms may have been chosen for that particular resource.
Chapter 14 on Protection presents more advanced methods for enforcing "nice"
cooperation among processes contending for shared resources.

 Concurrent Pascal, Mesa, C#, and Java all implement monitors as described
here. Erlang provides concurrency support using a similar mechanism.

5.9 Synchronization Examples

This section looks at how synchronization is handled in a number of different systems.

5.9.1 Synchronization in Windows

Figure 5.20 - Mutex dispatcher object

5.9.2 Synchronization in Linux

5.9.3 Synchronization in Solaris

 Solaris controls access to critical sections using five tools: semaphores,
condition variables, adaptive mutexes, reader-writer locks, and turnstiles. The
first two are as described above, and the other three are described here:

Adaptive Mutexes

 Adaptive mutexes are basically binary semaphores that are implemented
differently depending upon the conditions:

o On a single processor system, the semaphore sleeps when it is blocked,
until the block is released.

o On a multi-processor system, if the thread that is blocking the semaphore
is running on the same processor as the thread that is blocked, or if the
blocking thread is not running at all, then the blocked thread sleeps just
like a single processor system.

o However if the blocking thread is currently running on a different
processor than the blocked thread, then the blocked thread does a
spinlock, under the assumption that the block will soon be released.

o Adaptive mutexes are only used for protecting short critical sections,
where the benefit of not doing context switching is worth a short bit of
spinlocking. Otherwise traditional semaphores and condition variables
are used.

Reader-Writer Locks

 Reader-writer locks are used only for protecting longer sections of code which
are accessed frequently but which are changed infrequently.

Turnstiles

 A turnstile is a queue of threads waiting on a lock.
 Each synchronized object which has threads blocked waiting for access to it

needs a separate turnstile. For efficiency, however, the turnstile is associated
with the thread currently holding the object, rather than the object itself.

 In order to prevent priority inversion, the thread holding a lock for an object
will temporarily acquire the highest priority of any process in the turnstile
waiting for the blocked object. This is called a priority-inheritance protocol.

 User threads are controlled the same as for kernel threads, except that the
priority-inheritance protocol does not apply.

5.10 Alternate Approaches
o Transactional Memory

o OpenMP

o Functional Programming Langua

 Transactional Memory

 A memory transaction is a sequence of read-write operations to memory that

are performed atomically.

void update()

{

/* read/write memory */

}

OpenMP

 Functional Programming Languages

 Functional programming languages offer a different paradigm than procedural

languages in that they do not maintain state.

 Variables are treated as immutable and cannot change state once they have

been assigned a value.

 There is increasing interest in functional languages such as Erlang and Scala for

their approach in handling data races

Chapter-6

CPU Scheduling

CPU scheduling is a process which allows one process to use the CPU while the
execution of another process is on hold(in waiting state) due to unavailability of any
resource like I/O etc, thereby making full use of CPU. The aim of CPU scheduling is to

make the system efficient, fast and fair.

Whenever the CPU becomes idle, the operating system must select one of the processes
in the ready queue to be executed. The selection process is carried out by the short-term
scheduler (or CPU scheduler). The scheduler selects from among the processes in

memory that are ready to execute, and allocates the CPU to one of them

Histogram of CPU-burst Times

Indicates there are less no.of longer cpu burst processes and more

no.of smaller cpu bursts

CPU Scheduling: Dispatcher

Another component involved in the CPU scheduling function is the Dispatcher. The

dispatcher is the module that gives control of the CPU to the process selected by
the short-term scheduler. This function involves:

 Switching context

 Switching to user mode

 Jumping to the proper location in the user program to restart that program from where it

left last time.

The dispatcher should be as fast as possible, given that it is invoked during every process
switch. The time taken by the dispatcher to stop one process and start another process
is known as the Dispatch Latency. Dispatch Latency can be explained using the below

figure:

Types of CPU Scheduling

CPU scheduling decisions may take place under the following four circumstances:

1. When a process switches from the running state to the waiting state(for I/O request or

invocation of wait for the termination of one of the child processes).

2. When a process switches from the running state to the ready state (for example, when

an interrupt occurs).

3. When a process switches from the waiting state to the ready state(for example,

completion of I/O).

4. When a process terminates.

In circumstances 1 and 4, there is no choice in terms of scheduling. A new process(if one
exists in the ready queue) must be selected for execution. There is a choice, however in

circumstances 2 and 3.

When Scheduling takes place only under circumstances 1 and 4, we say the scheduling
scheme is non-preemptive; otherwise the scheduling scheme is preemptive.

Non-Preemptive Scheduling

Under non-preemptive scheduling, once the CPU has been allocated to a process, the
process keeps the CPU until it releases the CPU either by terminating or by switching to
the waiting state.

This scheduling method is used by the Microsoft Windows 3.1 and by the Apple Macintosh
operating systems.

It is the only method that can be used on certain hardware platforms, because It does not

require the special hardware(for example: a timer) needed for preemptive scheduling.

Preemptive Scheduling

In this type of Scheduling, the tasks are usually assigned with priorities. At times it is
necessary to run a certain task that has a higher priority before another task although it
is running. Therefore, the running task is interrupted for some time and resumed later

when the priority task has finished its execution.

CPU Scheduling: Scheduling Criteria

There are many different criterias to check when considering the "best" scheduling

algorithm, they are:

CPU Utilization

To make out the best use of CPU and not to waste any CPU cycle, CPU would be working
most of the time(Ideally 100% of the time). Considering a real system, CPU usage should

range from 40% (lightly loaded) to 90% (heavily loaded.)

Throughput

It is the total number of processes completed per unit time or rather say total amount of
work done in a unit of time. This may range from 10/second to 1/hour depending on the
specific processes.

Turnaround Time

It is the amount of time taken to execute a particular process, i.e. The interval from time
of submission of the process to the time of completion of the process(Wall clock time).

Waiting Time

The sum of the periods spent waiting in the ready queue amount of time a process has
been waiting in the ready queue to acquire get control on the CPU.

Load Average

It is the average number of processes residing in the ready queue waiting for their turn to
get into the CPU.

Response Time

Amount of time it takes from when a request was submitted until the first response is
produced. Remember, it is the time till the first response and not the completion of process
execution(final response).

In general CPU utilization and Throughput are maximized and other factors are reduced

for proper optimization.

 Scheduling Algorithm Optimization

Criteria

 Max CPU utilization

 Max throughput

 Min turnaround time

 Min waiting time

 Min response time

Scheduling Algorithms

To decide which process to execute first and which process to execute last to achieve

maximum CPU utilisation, computer scientists have defined some algorithms, they are:

1. First Come First Serve(FCFS) Scheduling

2. Shortest-Job-First(SJF) Scheduling

3. Priority Scheduling

4. Round Robin(RR) Scheduling

5. Multilevel Queue Scheduling

6. Multilevel Feedback Queue Scheduling

First Come First Serve Scheduling

In the "First come first serve" scheduling algorithm, as the name suggests, the process
which arrives first, gets executed first, or we can say that the process which requests the
CPU first, gets the CPU allocated first.

 First Come First Serve, is just like FIFO(First in First out) Queue data structure, where the

data element which is added to the queue first, is the one who leaves the queue first.

 This is used in Batch Systems.

 It's easy to understand and implement programmatically, using a Queue data structure,

where a new process enters through the tail of the queue, and the scheduler selects

process from the head of the queue.

 A perfect real life example of FCFS scheduling is buying tickets at ticket counter.

https://www.studytonight.com/operating-system/first-come-first-serve
https://www.studytonight.com/operating-system/shortest-job-first
https://www.studytonight.com/operating-system/priority-scheduling
https://www.studytonight.com/operating-system/round-robin-scheduling
https://www.studytonight.com/operating-system/multilevel-queue-scheduling
https://www.studytonight.com/operating-system/multilevel-feedback-queue-scheduling
https://www.studytonight.com/operating-system/types-of-os

Calculating Average Waiting Time

For every scheduling algorithm, Average waiting time is a crucial parameter to judge it's

performance.

AWT or Average waiting time is the average of the waiting times of the processes in the
queue, waiting for the scheduler to pick them for execution.

Lower the Average Waiting Time, better the scheduling algorithm.

Consider the processes P1, P2, P3, P4 given in the below table, arrives for execution in
the same order, with Arrival Time 0, and given Burst Time, let's find the average waiting

time using the FCFS scheduling algorithm.

The average waiting time will be 18.75 ms

For the above given processes, first P1 will be provided with the CPU resources,

 Hence, waiting time for P1 will be 0

 P1 requires 21 ms for completion, hence waiting time for P2 will be 21 ms

 Similarly, waiting time for process P3 will be execution time of P1 + execution time

for P2, which will be (21 + 3) ms = 24 ms.

 For process P4 it will be the sum of execution times of P1, P2 and P3.

The GANTT chart above perfectly represents the waiting time for each process.

Completion Time: Time taken for the execution to complete, starting from arrival time.

Turn Around Time: Time taken to complete after arrival. In simple words, it is the

difference between the Completion time and the Arrival time.

Turn Around Time = Completion Time – Arrival Time

Waiting Time: Total time the process has to wait before it's execution begins. It is the

difference between the Turn Around time and the Burst time of the process.

Waiting Time = Turn Around Time – Burst Time

Ex2:

Ex3:

1. Process Wait Time : Service Time - Arrival Time
2. P0 0 - 0 = 0
3. P1 5 - 1 = 4
4. P2 8 - 2 = 6
5. P3 16 - 3 = 13
6.
7. Average Wait Time: (0 + 4 + 6 + 13) / 4 = 5.75

Service Time : Service time means amount of time after which a process can

start execution. It is summation of burst time of previous processes

Let's take an example of The FCFS scheduling algorithm. In the Following schedule, there are
5 processes with process ID P0, P1, P2, P3 and P4. P0 arrives at time 0, P1 at time 1, P2
at time 2, P3 arrives at time 3 and Process P4 arrives at time 4 in the ready queue. The
processes and their respective Arrival and Burst time are given in the following table.

The Turnaround time and the waiting time are calculated by using the following formula.

1. Turn Around Time = Completion Time - Arrival Time

2. Waiting Time = Turnaround time - Burst Time

Process

ID

Arrival

Time

Burst

Time

Completi

on Time

Turn

Around

Time

Waiting

time

0 0 2 2 2 0

1 1 6 8 7 1

2 2 4 12 8 4

The average waiting Time is determined by summing the respective waiting time of all the
processes and divided the sum by the total number of processes.

 Avg Waiting Time=31/5

 (Gantt chart)

Advantages of FCFS
o Simple

o Easy

o First come, First serve

Problems or disadvantages with FCFS

Scheduling

Below we have a few shortcomings or problems with the FCFS scheduling algorithm:

1. It is Non Pre-emptive algorithm, which means the process priority doesn't matter.

If a process with very least priority is being executed, more like daily routine

backup process, which takes more time, and all of a sudden some other high

priority process arrives, like interrupt to avoid system crash, the high priority

process will have to wait, and hence in this case, the system will crash, just

because of improper process scheduling.

2. Not optimal Average Waiting Time.

3 3 9 21 18 9

4 4 12 33 29 17

3. Resources utilization in parallel is not possible, which leads to Convoy Effect, and hence

poor resource(CPU, I/O etc) utilization.

What is Convoy Effect?

Convoy Effect is a situation where many processes, who need to use a resource for short
time are blocked by one process holding that resource for a long time.

This essentially leads to poor utilization of resources and hence poor performance.

Shortest Job First(SJF) Scheduling
Shortest Job First scheduling works on the process with the shortest burst

time or duration first.

 This is the best approach to minimize waiting time.

 This is used in Batch Systems.

 It is of two types:

1. Non Pre-emptive

2. Pre-emptive

 To successfully implement it, the burst time/duration time of the processes should

be known to the processor in advance, which is practically not feasible all the time.

 This scheduling algorithm is optimal if all the jobs/processes are available at the

same time. (either Arrival time is 0 for all, or Arrival time is same for all)

Non Pre-emptive Shortest Job First

Consider the below processes available in the ready queue for execution, with arrival

time as 0 for all and given burst times.

https://www.studytonight.com/operating-system/types-of-os

As you can see in the GANTT chart above, the process P4 will be picked up
first as it has the shortest burst time, then P2, followed by P3 and at last P1.

We scheduled the same set of processes using the First come first
serve algorithm in the previous tutorial, and got average waiting time to be 18.75
ms, whereas with SJF, the average waiting time comes out 4.5 ms.

Ex:

As an example, consider the following set of processes, with the length of

the CPU-burst time given in milliseconds:

Using SJF scheduling, we would schedule these processes according to

the following Gantt chart:

https://www.studytonight.com/operating-system/first-come-first-serve
https://www.studytonight.com/operating-system/first-come-first-serve

The waiting time is 3 milliseconds for process P1, 16 milliseconds for process P2, 9

milliseconds for process P3, and 0 milliseconds for process P4. Thus, the average

waiting time is (3 +16 +9 + 0) /4 = 7 milliseconds. If we were using the FCFS

scheduling scheme, then the average waiting time would be 10.25 milliseconds.

The SJF scheduling algorithm is provably optimal, in that it gives the minimum

average waiting time for a given set of processes. By moving a short process before

a long one, the waiting time of the short process decreases more than it increases

the waiting time of the long process. Consequently, the average waiting time

decreases.

Problem with Non Pre-emptive SJF

If the arrival time for processes are different, which means all the processes are not
available in the ready queue at time 0, and some jobs arrive after some time, in such

situation, sometimes process with short burst time have to wait for the current process's
execution to finish, because in Non Pre-emptive SJF, on arrival of a process with short
duration, the existing job/process's execution is not halted/stopped to execute the short
job first.

This leads to the problem of Starvation, where a shorter process has to wait for a long

time until the current longer process gets executed. This happens if shorter jobs keep
coming, but this can be solved using the concept of aging.

Pre-emptive Shortest Job First

In Preemptive Shortest Job First Scheduling, jobs are put into ready queue as they arrive,
but as a process with short burst time arrives, the existing process is preempted or

removed from execution, and the shorter job is executed first.

As you can see in the GANTT chart above, as P1 arrives first, hence it's execution starts
immediately, but just after 1 ms, process P2 arrives with a burst time of 3 mswhich is less
than the burst time of P1, hence the process P1(1 ms done, 20 ms left) is preemptied and
process P2 is executed.

As P2 is getting executed, after 1 ms, P3 arrives, but it has a burst time greater than that
of P2, hence execution of P2 continues. But after another millisecond, P4 arrives with a

burst time of 2 ms, as a result P2(2 ms done, 1 ms left) is preemptied and P4 is executed.

After the completion of P4, process P2 is picked up and finishes, then P2 will get
executed and at last P1.

The Pre-emptive SJF is also known as Shortest Remaining Time First, because at any

given point of time, the job with the shortest remaining time is executed first.

Shortest Remaining Time First (SRTF)
Scheduling Algorithm

This Algorithm is the preemptive version of SJF scheduling. In SRTF, the execution of the

process can be stopped after certain amount of time. At the arrival of every process, the short
term scheduler schedules the process with the least remaining burst time among the list of
available processes and the running process.

Once all the processes are available in the ready queue, No preemption will be done and the
algorithm will work as SJF scheduling. The context of the process is saved in the Process
Control Block when the process is removed from the execution and the next process is

scheduled. This PCB is accessed on the next execution of this process.

Example

In this Example, there are five jobs P1, P2, P3, P4, P5 and P6. Their arrival time and burst
time are given below in the table.

Process

ID

Arriva

l Time

Burst Time Completion

Time

Turn

Around

Time

Waiting

Time

Resp

onse

Time

1 0 8 20 20 12 0

2 1 4 10 9 5 1

3 2 2 4 2 0 2

4 3 1 5 2 1 4

5 4 3 13 9 6 10

6 5 2 7 2 0 5

 Avg Waiting Time = 24/6

The Gantt chart is prepared according to the arrival and burst time given in the table.

1. Since, at time 0, the only available process is P1 with CPU burst time 8. This is the

only available process in the list therefore it is scheduled.

2. The next process arrives at time unit 1. Since the algorithm we are using is SRTF which

is a preemptive one, the current execution is stopped and the scheduler checks for the

process with the least burst time.

Till now, there are two processes available in the ready queue. The OS has executed

P1 for one unit of time till now; the remaining burst time of P1 is 7 units. The burst

time of Process P2 is 4 units. Hence Process P2 is scheduled on the CPU according to

the algorithm.

3. The next process P3 arrives at time unit 2. At this time, the execution of process P3 is

stopped and the process with the least remaining burst time is searched. Since the

process P3 has 2 unit of burst time hence it will be given priority over others.

4. The Next Process P4 arrives at time unit 3. At this arrival, the scheduler will stop the

execution of P4 and check which process is having least burst time among the available

processes (P1, P2, P3 and P4). P1 and P2 are having the remaining burst time 7 units

and 3 units respectively.

P3 and P4 are having the remaining burst time 1 unit each. Since, both are equal
hence the scheduling will be done according to their arrival time. P3 arrives earlier
than P4 and therefore it will be scheduled again.

5. The Next Process P5 arrives at time unit 4. Till this time, the Process P3 has completed

its execution and it is no more in the list. The scheduler will compare the remaining

burst time of all the available processes. Since the burst time of process P4 is 1 which

is least among all hence this will be scheduled.

6. The Next Process P6 arrives at time unit 5, till this time, the Process P4 has completed

its execution. We have 4 available processes till now, that are P1 (7), P2 (3), P5 (3)

and P6 (2). The Burst time of P6 is the least among all hence P6 is scheduled. Since,

now, all the processes are available hence the algorithm will now work same as SJF.

P6 will be executed till its completion and then the process with the least remaining

time will be scheduled.

SRTF GATE 2011 Example

If we talk about scheduling algorithm from the GATE point of view, they

generally ask simple numerical questions about finding the average waiting

time and Turnaround Time. Let's discuss the question asked in GATE 2011 on

SRTF.

Q. Given the arrival time and burst time of 3 jobs in the table below. Calculate the Average

waiting time of the system.

Process ID Arrival Time Burst Time Completion

Time

Turn Around

Time

Waiting

Time

1 0 9 13 13 4

2 1 4 5 4 0

3 2 9 22 20 11

There are three jobs P1, P2 and P3. P1 arrives at time unit 0; it will be scheduled first for the

time until the next process arrives. P2 arrives at 1 unit of time. Its burst time is 4 units which
is least among the jobs in the queue. Hence it will be scheduled next.

At time 2, P3 will arrive with burst time 9. Since remaining burst time of P2 is 3 units which
are least among the available jobs. Hence the processor will continue its execution till its
completion. Because all the jobs have been arrived so no preemption will be done now and
all the jobs will be executed till the completion according to SJF.

Avg Waiting Time = (4+0+11)/3 = 5 units

Priority Scheduling

In Priority scheduling, there is a priority number assigned to each process. In

some systems, the lower the number, the higher the priority. While, in the

others, the higher the number, the higher will be the priority. The Process with

the higher priority among the available processes is given the CPU. There are
two types of priority scheduling algorithm exists. One is Preemptive priority

scheduling while the other is Non Preemptive Priority scheduling.

The priority number assigned to each of the process may or may not vary.

If the priority number doesn't change itself throughout the process, it is

called static priority, while if it keeps changing itself at the regular intervals,

it is called dynamic priority.

Non Preemptive Priority Scheduling

In the Non Preemptive Priority scheduling, The Processes are scheduled
according to the priority number assigned to them. Once the process gets

scheduled, it will run till the completion. Generally, the lower the priority

number, the higher is the priority of the process. The people might get

confused with the priority numbers, hence in the GATE, there clearly mention

which one is the highest priority and which one is the lowest one.

Example

In the Example, there are 7 processes P1, P2, P3, P4, P5, P6 and P7. Their priorities,

Arrival Time and burst time are given in the table.

Process ID Priority Arrival Time Burst Time

1 2 0 3

2 6 2 5

3 3 1 4

4 5 4 2

5 7 6 9

6 4 5 4

7 10 7 10

We can prepare the Gantt chart according to the Non Preemptive priority scheduling.

The Process P1 arrives at time 0 with the burst time of 3 units and the priority number
2. Since No other process has arrived till now hence the OS will schedule it

immediately.

Meanwhile the execution of P1, two more Processes P2 and P3 are arrived. Since the

priority of P3 is 3 hence the CPU will execute P3 over P2.

Meanwhile the execution of P3, All the processes get available in the ready queue.

The Process with the lowest priority number will be given the priority. Since P6 has

priority number assigned as 4 hence it will be executed just after P3.

After P6, P4 has the least priority number among the available processes; it will get

executed for the whole burst time.

Since all the jobs are available in the ready queue hence All the Jobs will get executed

according to their priorities. If two jobs have similar priority number assigned to

them, the one with the least arrival time will be executed.

From the GANTT Chart prepared, we can determine the completion time of every process.

The turnaround time, waiting time and response time will be determined.

1. Turn Around Time = Completion Time - Arrival Time

2. Waiting Time = Turn Around Time - Burst Time

Process

Id

Priority Arrival

Time

Burst

Time

Completion

Time

Turnaround

Time

Waiting

Time

Respon

se Time

1 2 0 3 3 3 0 0

2 6 2 5 18 16 11 13

3 3 1 4 7 6 2 3

4 5 4 2 13 9 7 11

5 7 6 9 27 21 12 18

6 4 5 4 11 6 2 7

7 10 7 10 37 30 20 27

 Avg Waiting Time = (0+11+2+7+12+2+18)/7 = 54/7 units

Preemptive Priority Scheduling

In Preemptive Priority Scheduling, at the time of arrival of a process in the

ready queue, its Priority is compared with the priority of the other processes

present in the ready queue as well as with the one which is being executed by

the CPU at that point of time. The One with the highest priority among all the

available processes will be given the CPU next.

The difference between preemptive priority scheduling and non preemptive
priority scheduling is that, in the preemptive priority scheduling, the job which

is being executed can be stopped at the arrival of a higher priority job.

Once all the jobs get available in the ready queue, the algorithm will behave

as non-preemptive priority scheduling, which means the job scheduled will run

till the completion and no preemption will be done.

Example

There are 7 processes P1, P2, P3, P4, P5, P6 and P7 given. Their respective

priorities, Arrival Times and Burst times are given in the table below.

Process Id Priority Arrival Time Burst Time

1 2(L) 0 1

2 6 1 7

3 3 2 3

4 5 3 6

5 4 4 5

6 10(H) 5 15

7 9 15 8

GANTT chart Preparation

At time 0, P1 arrives with the burst time of 1 units and priority 2. Since no

other process is available hence this will be scheduled till next job arrives or

its completion (whichever is lesser).

At time 1, P2 arrives. P1 has completed its execution and no other process is

available at this time hence the Operating system has to schedule it regardless

of the priority assigned to it.

The Next process P3 arrives at time unit 2, the priority of P3 is higher to P2.

Hence the execution of P2 will be stopped and P3 will be scheduled on the cpu

.

During the execution of P3, three more processes P4, P5 and P6 becomes

available. Since, all these three have the priority lower to the process in

execution so PS can't preempt the process. P3 will complete its execution and
then P5 will be scheduled with the priority highest among the available

processes.

Meanwhile the execution of P5, all the processes got available in the ready

queue. At this point, the algorithm will start behaving as Non Preemptive

Priority Scheduling. Hence now, once all the processes get available in the

ready queue, the OS just took the process with the highest priority and

execute that process till completion. In this case, P4 will be scheduled and will

be executed till the completion.

Since P4 is completed, the other process with the highest priority available in

the ready queue is P2. Hence P2 will be scheduled next.

P2 is given the CPU till the completion. Since its remaining burst time is 6

units hence P7 will be scheduled after this.

The only remaining process is P6 with the least priority, the Operating System

has no choice unless of executing it. This will be executed at the last.

The Completion Time of each process is determined with the help of GANTT

chart. The turnaround time and the waiting time can be calculated by the

following formula.

1. Turnaround Time = Completion Time - Arrival Time

2. Waiting Time = Turn Around Time - Burst Time

Process Id Priority Arrival

Time

Burst Time Completio

n Time

Turn

around

Time

Waitin

g Time

1 2 0 1 1 1 0

2 6 1 7 22 21 14

3 3 2 3 5 3 0

4 5 3 6 16 13 7

5 4 4 5 10 6 1

6 10 5 15 45 40 25

7 9 6 8 30 24 16

 Avg Waiting Time = (0+14+0+7+1+25+16)/7 = 63/7 = 9 units

Round Robin Scheduling Algorithm

Round Robin scheduling algorithm is one of the most popular scheduling
algorithm which can actually be implemented in most of the operating

systems. This is the preemptive version of first come first serve scheduling.

The Algorithm focuses on Time Sharing. In this algorithm, every process gets

executed in a cyclic way. A certain time slice is defined in the system which

is called time quantum. Each process present in the ready queue is assigned
the CPU for that time quantum, if the execution of the process is completed

during that time then the process will terminate else the process will go back

to the ready queue and waits for the next turn to complete the execution.

Advantages
1. It can be actually implementable in the system because it is not depending on the

burst time.

2. It doesn't suffer from the problem of starvation or convoy effect.

3. All the jobs get a fare allocation of CPU.

Disadvantages
1. The higher the time quantum, the higher the response time in the

system.

2. The lower the time quantum, the higher the context switching overhead

in the system.

3. Deciding a perfect time quantum is really a very difficult task in the

system.

RR Scheduling Example

In the following example, there are six processes named as P1, P2, P3, P4, P5

and P6. Their arrival time and burst time are given below in the table. The

time quantum of the system is 4 units.

Process

ID

Arrival

Time

Burst Time

1 0 5

2 1 6

3 2 3

4 3 1

5 4 5

6 6 4

According to the algorithm, we have to maintain the ready queue and the

Gantt chart. The structure of both the data structures will be changed after

every scheduling.

Note: Refer notebook

Multilevel Queue (MLQ) CPU Scheduling

It may happen that processes in the ready queue can be divided into different classes where each

class has its own scheduling needs. For example, a common division is a foreground

(interactive) process and background (batch) processes.These two classes have different

scheduling needs. For this kind of situation Multilevel Queue Scheduling is used.Now, let us see

how it works.

Ready Queue is divided into separate queues for each class of processes. For example, let us take

three different types of process System processes, Interactive processes and Batch Processes. All

three process have there own queue. Now,look at the below figure.

All three different type of processes have there own queue. Each queue have its own Scheduling

algorithm. For example, queue 1 and queue 2 uses Round Robin while queue 3 can use FCFS to

schedule there processes.

Scheduling among the queues : What will happen if all the queues have some processes? Which

process should get the cpu? To determine this Scheduling among the queues is necessary. There

are two ways to do so –

1. Fixed priority preemptive scheduling method – Each queue has absolute priority over

lower priority queue. Let us consider following priority order queue 1 > queue 2 > queue

3.According to this algorithm no process in the batch queue(queue 3) can run unless queue

1 and 2 are empty. If any batch process (queue 3) is running and any system (queue 1) or

Interactive process(queue 2) entered the ready queue the batch process is preempted.

2. Time slicing – In this method each queue gets certain portion of CPU time and can use it to

schedule its own processes.For instance, queue 1 takes 50 percent of CPU time queue 2 takes

30 percent and queue 3 gets 20 percent of CPU time.

Example Problem :
Consider below table of four processes under Multilevel queue scheduling.Queue number denotes

the queue of the process.

Priority of queue 1 is greater than queue 2. queue 1 uses Round Robin (Time Quantum = 2) and

queue 2 uses FCFS.

Below is the gantt chart of the problem :

At starting both queues have process so process in queue 1 (P1, P2) runs first (because of higher priority)

in the round robin fashion and completes after 7 units then process in queue 2 (P3) starts running (as there

is no process in queue 1) but while it is running P4 comes in queue 1 and interrupts P3 and start running
for 5 second and after its completion P3 takes the CPU and completes its execution.

Multilevel Feedback Queue Scheduling (MLFQ) CPU

Scheduling

his Scheduling is like Multilevel Queue(MLQ) Scheduling but in this process can move between the

queues. Multilevel Feedback Queue Scheduling (MLFQ) keep analyzing the behavior (time of

execution) of processes and according to which it changes its priority.Now, look at the diagram and

explanation below to understand it properly.

Well, above implementation may differ for example the last queue can also follow Round-robin

Scheduling.

Problems in the above implementation – A process in the lower priority queue can suffer from

starvation due to some short processes taking all the CPU time.

Solution – A simple solution can be to boost the priority of all the process after regular intervals

and place them all in the highest priority queue.

What is the need of such complex Scheduling?

 Firstly, it is more flexible than the multilevel queue scheduling.

 To optimize turnaround time algorithms like SJF is needed which require the running time

of processes to schedule them. But the running time of the process is not known in advance.

MFQS runs a process for a time quantum and then it can change its priority(if it is a long

process). Thus it learns from past behavior of the process and then predicts its future

behavior.This way it tries to run shorter process first thus optimizing turnaround time.

 MFQS also reduces the response time.

 Example –
Consider a system which has a CPU bound process, which requires the burst time of 40

seconds.The multilevel Feed Back Queue scheduling algorithm is used and the queue time

quantum ‘2’ seconds and in each level it is incremented by ‘5’ seconds.Then how many

times the process will be interrupted and on which queue the process will terminate the

execution?

 Solution –
Process P needs 40 Seconds for total execution.

At Queue 1 it is executed for 2 seconds and then interrupted and shifted to queue 2.

At Queue 2 it is executed for 7 seconds and then interrupted and shifted to queue 3.

At Queue 3 it is executed for 12 seconds and then interrupted and shifted to queue 4.

At Queue 4 it is executed for 17 seconds and then interrupted and shifted to queue 5.

At Queue 5 it executes for 2 seconds and then it completes.

Hence the process is interrupted 4 times and completes on queue 5.

Multiple-Processor Scheduling in Operating System

In multiple-processor scheduling multiple CPU’s are available and hence Load Sharing becomes

possible. However multiple processor scheduling is more complex as compared to single

processor scheduling. In multiple processor scheduling there are cases when the processors are

identical i.e. HOMOGENEOUS, in terms of their functionality, we can use any processor available

to run any process in the queue.

Approaches to Multiple-Processor Scheduling –

One approach is when all the scheduling decisions and I/O processing are handled by a single

processor which is called the Master Server and the other processors executes only the user code.

This is simple and reduces the need of data sharing. This entire scenario is called Asymmetric

Multiprocessing.

A second approach uses Symmetric Multiprocessing where each processor is self scheduling.

All processes may be in a common ready queue or each processor may have its own private queue

for ready processes. The scheduling proceeds further by having the scheduler for each processor

examine the ready queue and select a process to execute.

Processor Affinity –

Processor Affinity means a processes has an affinity for the processor on which it is currently

running.

When a process runs on a specific processor there are certain effects on the cache memory. The

data most recently accessed by the process populate the cache for the processor and as a result

successive memory access by the process are often satisfied in the cache memory. Now if the

process migrates to another processor, the contents of the cache memory must be invalidated for

the first processor and the cache for the second processor must be repopulated. Because of the high

cost of invalidating and repopulating caches, most of the SMP(symmetric multiprocessing)

systems try to avoid migration of processes from one processor to another and try to keep a process

running on the same processor. This is known as PROCESSOR AFFINITY.

There are two types of processor affinity:

1. Soft Affinity – When an operating system has a policy of attempting to keep a process

running on the same processor but not guaranteeing it will do so, this situation is called soft

affinity.

2. Hard Affinity – Some systems such as Linux also provide some system calls that support

Hard Affinity which allows a process to migrate between processors.

Load Balancing –

Load Balancing is the phenomena which keeps the workload evenly distributed across all

processors in an SMP system. Load balancing is necessary only on systems where each processor

has its own private queue of process which are eligible to execute. Load balancing is unnecessary

because once a processor becomes idle it immediately extracts a runnable process from the

common run queue. On SMP(symmetric multiprocessing), it is important to keep the workload

balanced among all processors to fully utilize the benefits of having more than one processor else

one or more processor will sit idle while other processors have high workloads along with lists of

processors awaiting the CPU.

There are two general approaches to load balancing :

1. Push Migration – In push migration a task routinely checks the load on each processor and

if it finds an imbalance then it evenly distributes load on each processors by moving the

processes from overloaded to idle or less busy processors.

2. Pull Migration – Pull Migration occurs when an idle processor pulls a waiting task from a

busy processor for its execution.

Multicore Processors –

In multicore processors multiple processor cores are places on the same physical chip. Each core

has a register set to maintain its architectural state and thus appears to the operating system as a

separate physical processor. SMP systems that use multicore processors are faster and

consume less power than systems in which each processor has its own physical chip.

However multicore processors may complicate the scheduling problems. When processor

accesses memory then it spends a significant amount of time waiting for the data to become

available. This situation is called MEMORY STALL. It occurs for various reasons such as cache

miss, which is accessing the data that is not in the cache memory. In such cases the processor can

spend upto fifty percent of its time waiting for data to become available from the memory. To

solve this problem recent hardware designs have implemented multithreaded processor cores in

which two or more hardware threads are assigned to each core. Therefore if one thread stalls while

waiting for the memory, core can switch to another thread.

There are two ways to multithread a processor :

1. Coarse-Grained Multithreading – In coarse grained multithreading a thread executes on a

processor until a long latency event such as a memory stall occurs, because of the delay

caused by the long latency event, the processor must switch to another thread to begin

execution. The cost of switching between threads is high as the instruction pipeline must be

terminated before the other thread can begin execution on the processor core. Once this new

thread begins execution it begins filling the pipeline with its instructions.

2. Fine-Grained Multithreading – This multithreading switches between threads at a much

finer level mainly at the boundary of an instruction cycle. The architectural design of fine

grained systems include logic for thread switching and as a result the cost of switching

between threads is small.

Virtualization and Threading –

In this type of multiple-processor scheduling even a single CPU system acts like a multiple-

processor system. In a system with Virtualization, the virtualization presents one or more virtual

CPU’s to each of virtual machines running on the system and then schedules the use of physical

CPU’S among the virtual machines. Most virtualized environments have one host operating system

and many guest operating systems. The host operating system creates and manages the virtual

machines and each virtual machine has a guest operating system installed and applications running

within that guest.Each guest operating system may be assigned for specific use cases,applications,

and users,including time sharing or even real-time operation. Any guest operating-system

scheduling algorithm that assumes a certain amount of progress in a given amount of time will be

negatively impacted by the virtualization. In a time sharing operating system that tries to allot 100

milliseconds to each time slice to give users a reasonable response time. A given 100 millisecond

time slice may take much more than 100 milliseconds of virtual CPU time. Depending on how

busy the system is, the time slice may take a second or more which results in a very poor response

time for users logged into that virtual machine. The net effect of such scheduling layering is that

individual virtualized operating systems receive only a portion of the available CPU cycles, even

though they believe they are receiving all cycles and that they are scheduling all of those

cycles.Commonly, the time-of-day clocks in virtual machines are incorrect because timers take no

longer to trigger than they would on dedicated CPU’s.

Evaluation of Process Scheduling Algorithms

In the section above we looked at various scheduling algorithms. But how do we decide

which one to use?

The first thing we need to decide is how we will evaluate the algorithms. To do this we

need to decide on the relative importance of the factors we listed above (Fairness,

Efficiency, Response Times, Turnaround and Throughput). Only once we have decided

on our evaluation method can we carry out the evaluation.

Deterministic Modeling

This evaluation method takes a predetermined workload and evaluates each algorithm

using that workload.

Assume we are presented with the following processes, which all arrive at time zero.

Process Burst Time

P1 9

P2 33

P3 2

P4 5

P5 14

Which of the following algorithms will perform best on this workload?

First Come First Served (FCFS), Non Preemptive Shortest Job First (SJF) and Round

Robin (RR). Assume a quantum of 8 milliseconds.

Before looking at the answers, try to calculate the figures for each algorithm.

The advantages of deterministic modeling is that it is exact and fast to compute. The

disadvantage is that it is only applicable to the workload that you use to test. As an

example, use the above workload but assume P1 only has a burst time of 8 milliseconds.

What does this do to the average waiting time?

Of course, the workload might be typical and scale up but generally deterministic

modeling is too specific and requires too much knowledge about the workload.

Queuing Models

Another method of evaluating scheduling algorithms is to use queuing theory. Using

data from real processes we can arrive at a probability distribution for the length of a

burst time and the I/O times for a process. We can now generate these times with a

certain distribution.

We can also generate arrival times for processes (arrival time distribution).

If we define a queue for the CPU and a queue for each I/O device we can test the various

scheduling algorithms using queuing theory.

Knowing the arrival rates and the service rates we can calculate various figures such as

average queue length, average wait time, CPU utilization etc.

One useful formula is Little's Formula.

n = λw

Where

http://www.cs.nott.ac.uk/~pszgxk/courses/g53ops/Scheduling/sched13-answers.html

n is the average queue length

λ is the average arrival rate for new processes (e.g. five a second)

w is the average waiting time in the queue

Knowing two of these values we can, obviously, calculate the third. For example, if we

know that eight processes arrive every second and there are normally sixteen processes

in the queue we can compute that the average waiting time per process is two seconds.

The main disadvantage of using queuing models is that it is not always easy to define

realistic distribution times and we have to make assumptions. This results in the model

only being an approximation of what actually happens.

Simulations

Rather than using queuing models we simulate a computer. A Variable, representing a

clock is incremented. At each increment the state of the simulation is updated.

Statistics are gathered at each clock tick so that the system performance can be analysed.

The data to drive the simulation can be generated in the same way as the queuing model,

although this leads to similar problems.

Alternatively, we can use trace data. This is data collected from real processes on real

machines and is fed into the simulation. This can often provide good results and good

comparisons over a range of scheduling algorithms.

However, simulations can take a long time to run, can take a long time to implement

and the trace data may be difficult to collect and require large amounts of storage.

Implementation

The best way to compare algorithms is to implement them on real machines. This will

give the best results but does have a number of disadvantages.

· It is expensive as the algorithm has to be written and then implemented on real

hardware.

· If typical workloads are to be monitored, the scheduling algorithm must be used in a

live situation. Users may not be happy with an environment that is constantly changing.

· If we find a scheduling algorithm that performs well there is no guarantee that this

state will continue if the workload or environment changes.

Algorithm Evaluation

How do we select a CPU scheduling algorithm for a particular system?

There are many scheduling algorithms, each with its own parameters. As a

result, selecting an algorithm can be difficult. The first problem is defining the

criteria to be used in selecting an algorithm. Criteria are often defined in

terms of CPU utilization, response time, or throughput. To select an

algorithm, we must first define the relative importance of these measures.

Our criteria may include several measures, such as:

 Maximizing CPU utilization under the constraint that the maximum

response time is 1 second

 Maximizing throughput such that turnaround time is (on average)

linearly proportional to total execution time Once the selection criteria

have been defined, we want to evaluate the algorithms under

consideration.We next describe the various evaluation methods we can

use.

Deterministic Modeling

One major class of evaluation methods is analytic evaluation. Analytic

evaluation uses the given algorithm and the system workload to produce a

formula or number that evaluates the performance of the algorithm for that

workload. One type of analytic evaluation is deterministic modeling. This

method takes a particular predetermined workload and defines the

performance of each algorithm for that workload. For example, assume that

we have the workload shown below. All five processes arrive at time 0, in the

order given, with the length of the CPU burst given in milliseconds:

Deterministic modeling is simple and fast. It gives us exact
numbers, allowing us to compare the algorithms. However, it
requires exact numbers for input, and its answers apply only
to those cases. The main uses of deterministic modeling are
in describing scheduling algorithms and providing examples.

In cases where we are running the same program over and
over again and can measure the program's processing

requirements exactly, we may be able to use deterministic
modeling to select a scheduling algorithm. Furthermore, over
a set of examples, deterministic modeling may indicate trends
that can then be analyzed and proved separately.

For example, it can be shown that, for the environment
described (all processes and their times available at time 0),
the SJF policy will always result in the minimum waiting time.

Queueing Models

On many systems, the processes that are run vary from day
to day, so there is no static set of processes (or times) to use
for deterministic modeling. What can be determined,
however, is the distribution of CPU and I/O bursts. These
distributions can be measured and then approximated or
simply estimated. The result is a mathematical formula
describing the probability of a particular CPU burst.
Commonly, this distribution is exponential and is described by
its mean. Similarly, we can describe the distribution of times
when processes arrive in the system (the arrival-time
distribution). From these two distributions, it is possible to
compute the average throughput, utilization, waiting time,
and so on for most algorithms. The computer system is
described as a network of servers.

 Each server has a queue of waiting processes. The CPU is a
server with its ready queue, as is the I/O system with its
device queues. Knowing arrival rates and service rates, we
can compute utilization, average queue length, average wait
time, and so on. This area of study is called queueing-network
analysis. As an example, let n be the average queue length
(excluding the process being serviced), let W be the average
waiting time in the queue, and let X be the average arrival
rate for new processes in the queue (such as three processes
per second).

We expect that during the time W that a process waits, \ x W new processes
will arrive in the queue. If the system is in a steady state, then the number of
processes leaving the queue must be equal to the number of processes that
arrive. Thus, This equation, known as Little's formula, is particularly useful

because it is valid for any scheduling algorithm and arrival distribution. We
can use Little's formula to compute one of the three variables, if we know
the other two.

For example, if we know that 7 processes arrive every second (on average),
and that there are normally 14 processes in the queue, then we can compute
the average waiting time per process as 2 seconds. Queueing analysis can be
useful in comparing scheduling algorithms, but it also has limitations. At the
moment, the classes of algorithms and distributions that can be handled are
fairly limited.

The mathematics of complicated algorithms and distributions can be difficult
to work with. Thus, arrival and service distributions are often defined in
mathematically tractable —but unrealistic—ways. It is also generally
necessary to make a number of independent assumptions, which may not be
accurate. As a result of these difficulties, queueing models are often only
approximations of real systems, and the accuracy of the computed results
may be questionable.

Simulations

To get a more accurate evaluation of scheduling algorithms, we can use

simulations. Running simulations involves programming a model of the

computer system. Software data structures represent the major components

of the system. The simulator has a variable representing a clock; as this

variable's value is increased, the simulator modifies the system state to

reflect the activities of the devices, the processes, and the scheduler. As the

simulation executes, statistics that indicate algorithm performance are

gathered and printed. The data to drive the simulation can be generated in

several ways. The most common method uses a random-number generator,

which is programmed to generate processes, CPU burst times, arrivals,

departures, and so on, according to probability distributions.

The distributions can be defined mathematically (uniform,
exponential, Poisson) or empirically. If a distribution is to be
defined empirically, measurements of the actual system
under study are taken. The results define the distribution of
events in the real system; this distribution can then be used
to drive the simulation. A distribution-driven simulation may
be inaccurate, however, because of relationships between
successive events in the real system. The frequency
distribution indicates only how many instances of each event
occur; it does not indicate anything about the order of their
occurrence.

 To correct this problem, we can use trace tapes. We create a
trace tape by monitoring the real system and recording the
sequence of actual events (Figure 5.15). We then use this
sequence to drive the simulation. Trace tapes provide an

excellent way to compare two algorithms on exactly the same
set of real inputs. This method can produce accurate results
for its inputs.

Simulations can be expensive, often requiring hours of computer time. A

more detailed simulation provides more accurate results, but it also requires

more computer time. In addition, trace tapes can require large amounts of

storage space. Finally, the design, coding, and debugging of the simulator

can be a major task.

Implementation Even a simulation is of limited accuracy. The only completely

accurate way to evaluate a scheduling algorithm is to code it up, put it in the

operating system, and see how it works. This approach puts the actual

algorithm in the real system for evaluation under real operating conditions.

The major difficulty with this approach is the high cost.

The expense is incurred not only in coding the algorithm and modifying the

operating system to support it (along with its required data structures) but

also in the reaction of the users to a constantly changing operating system.

Most users are not interested in building a better operating system; they

merely want to get their processes executed and use their results. A

constantly changing operating system does not help the users to get their

work done. Another difficulty is that the environment in which the algorithm

is used will change.

The environment will change not only in the usual way, as new programs are

written and the types of problems change, but also as a result of the

performance of the scheduler. If short processes are given priority, then users

may break larger processes into sets of smaller processes. If interactive

processes are given priority over noninteractive processes, then users may

switch to interactive use. For example, researchers designed one system that

classified interactive and noninteractive processes automatically by looking

at the amount of terminal I/O.

 If a process did not input or output to the terminal in a 1-second interval,

the process was classified as noninteractive and was moved to a lower-

priority queue. In response to this policy, one programmer modified his

programs to write an arbitrary character to the terminal at regular intervals

of less than 1 second. The system gave his programs a high priority, even

though the terminal output was completely meaningless. The most flexible

scheduling algorithms are those that can be altered by the system managers

or by the users so that they can be tuned for a specific application or set of

applications. For instance, a workstation that performs high-end graphical

applications may have scheduling needs different from those of a web server

or file server.

Some operating systems— particularly several versions of UNIX—allow the

system manager to fine-tune the scheduling parameters for a particular

system configuration. For example, Solaris provides the dispadmin command

to allow the system administrator to modify the parameters of the scheduling

classes . Another approach is to use APIs that modify the priority of a process

or thread. The Java, /POSIX, and /WinAPI/ provide such functions. The

downfall of this approach is that performance tuning a system or application

most often does not result in improved performance in more general

situations.

	CHAPTER-4 : Threads
	4.1 Overview
	4.1.1 Motivation
	4.1.2 Benefits

	4.2 Multicore Programming
	4.2.1 Programming Challenges
	4.2.2 Types of Parallelism

	4.3 Multithreading Models
	4.3.1 Many-To-One Model
	4.3.2 One-To-One Model
	4.3.3 Many-To-Many Model

	4.4 Thread Libraries
	4.4.1 Pthreads
	4.4.2 Windows Threads
	4.4.3 Java Threads

	4.5 Implicit Threading
	4.5.1 Thread Pools
	4.5.2 OpenMP
	4.5.3 Grand Central Dispatch, GCD
	4.5.4 Other Approaches

	4.6 Threading Issues
	4.6.1 The fork () and exec () System Calls
	4.6.2 Signal Handling
	4.6.3 Thread Cancellation
	4.6.4 Thread-Local Storage (was 4.4.5 Thread-Specific Data)
	4.6.5 Scheduler Activations

	4.7 Operating-System Examples
	4.7.1 Windows XP Threads
	4.7.2 Linux Threads

	CHAPTER-5 : Process Synchronization
	5.1 Background
	5.2 The Critical-Section Problem
	5.3 Peterson's Solution
	Properties followed by this solution:

	5.4 Synchronization Hardware
	5.5 Mutex Locks
	5.6 Semaphores
	5.6.1 Semaphore Usage
	5.6.2 Semaphore Implementation
	5.6.3 Deadlocks and Starvation
	5.6.4 Priority Inversion

	5.7 Classic Problems of Synchronization
	5.7.1 The Bounded-Buffer Problem
	5.7.2 The Readers-Writers Problem
	5.7.3 The Dining-Philosophers Problem

	Classical Problems of Synchronization
	Bounded Buffer Problem
	What is the Problem Statement?
	Solution
	The Producer Operation
	The Consumer Operation

	Dining Philosophers Problem
	What is the Problem Statement?
	Here's the Solution

	Readers Writer Problem
	 The Problem Statement
	 The Solution
	Here is the Code uncoded(explained)
	5.8 Monitors
	5.8.1 Monitor Usage
	Bounded Buffer Using Monitors
	5.8.2 Dining-Philosophers Solution Using Monitors
	5.8.3 Implementing a Monitor Using Semaphores
	5.8.4 Resuming Processes Within a Monitor

	5.9 Synchronization Examples
	5.9.1 Synchronization in Windows
	5.9.2 Synchronization in Linux
	5.9.3 Synchronization in Solaris
	Adaptive Mutexes
	Reader-Writer Locks
	Turnstiles

	5.10 Alternate Approaches

	Chapter-6
	CPU Scheduling
	CPU Scheduling: Dispatcher
	Types of CPU Scheduling
	Non-Preemptive Scheduling
	Preemptive Scheduling

	CPU Scheduling: Scheduling Criteria
	CPU Utilization
	Throughput
	Turnaround Time
	Waiting Time
	Load Average
	Response Time

	 Max CPU utilization
	 Max throughput
	 Min turnaround time
	 Min waiting time
	 Min response time
	Scheduling Algorithms

	First Come First Serve Scheduling
	Calculating Average Waiting Time
	Ex3:
	Advantages of FCFS
	Problems or disadvantages with FCFS Scheduling

	Shortest Job First(SJF) Scheduling
	Non Pre-emptive Shortest Job First
	Problem with Non Pre-emptive SJF

	Pre-emptive Shortest Job First

	Shortest Remaining Time First (SRTF) Scheduling Algorithm
	Example

	SRTF GATE 2011 Example
	Q. Given the arrival time and burst time of 3 jobs in the table below. Calculate the Average waiting time of the system.

	Priority Scheduling
	Non Preemptive Priority Scheduling
	Example

	Preemptive Priority Scheduling
	Example
	GANTT chart Preparation

	Round Robin Scheduling Algorithm
	Advantages
	Disadvantages

	RR Scheduling Example
	Multilevel Queue (MLQ) CPU Scheduling
	Multilevel Feedback Queue Scheduling (MLFQ) CPU Scheduling
	his Scheduling is like Multilevel Queue(MLQ) Scheduling but in this process can move between the queues. Multilevel Feedback Queue Scheduling (MLFQ) keep analyzing the behavior (time of execution) of processes and according to which it changes its pri...
	Multiple-Processor Scheduling in Operating System
	Approaches to Multiple-Processor Scheduling –
	Processor Affinity –
	Load Balancing –
	Multicore Processors –
	Virtualization and Threading –

	Evaluation of Process Scheduling Algorithms
	Deterministic Modeling
	Queuing Models
	Simulations
	Implementation

