
UNIT III 

Memory Management: Swapping, contiguous memory allocation, segmentation, paging, structure of the page table. 

Virtual memory: demand paging, page-replacement, Allocation of frames, Thrashing, Memory-Mapped Files, 
Allocating Kernel Memory 

MEMORY MANAGEMENT 

 Background 

 Logical versus Physical Address Space 

 Swapping 

 Contiguous Allocation 

 Paging 

 Segmentation 

 Segmentation with Paging 

Background 

 Program must be brought into memory and placed within a process for it to be 

executed. 

 User programs go through several steps before being executed. 

Address binding of instructions and data to memory 

addresses can happen at three stages: 

 Compile time: If memory location known a priori, absolute code can be 

generated; must recompile code if starting location changes. 

 Load time: Must generate relocatable code if memory location is not known at 

compile time. 

 Execution time: Binding delayed until run time if the process can be moved 

during its execution from one memory segment to another. Need hardware 

support for address maps (e.g., base and limit registers). 

 Dynamic Loading - routine is not loaded until it is called. 

o Better memory-space utilization; unused routine is never loaded. 

o Useful when large amounts of code are needed to handle infrequently 

occurring cases. 

o No special support from the operating system is required; implemented 

through program design. 

 Dynamic Linking - linking postponed until execution time. 

o Small piece of code, stub, used to locate the appropriate memory-

resident library routine. 



o Stub replaces itself with the address of the routine, and executes the 

routine. 

o Operating system needed to check if routine is in processes' memory 

address. 

 Overlays - keep in memory only those instructions and data that are needed at 

any given time. 

o Needed when process is larger than amount of memory allocated to it. 

o Implemented by user, no special support needed from operating system; 

programming design of overlay structure is complex. 

Logical versus Physical Address Space 

 The concept of a logical address space that is bound to a separate physical 

address space is central to proper memory management. 

o Logical address - generated by the CPU; also referred to as virtual 

address. 

o Physical address - address seen by the memory unit. 

 Logical and physical addresses are the same in compile-time and load-time 

address-binding schemes; logical (virtual) and physical addresses differ in 

execution-time address-binding scheme. 

Memory-management unit (MMU) - hardware device that 

maps virtual to physical address. 

 



 In MMU scheme, the value in a relocation register is added to every address 

generated by a user process at the time it is sent to memory. 

 The user program deals with logical addresses; it never sees the real physical 

addresses. 

Swapping 

 A process can be swapped temporarily out of memory to a backing store, and 

then brought back into memory for continued execution. 

 Backing store - fast disk large enough to accommodate copies of all memory 

images for all users; must provide direct access to these memory images. 

 Major part of swap time is transfer time; total transfer time is directly 

proportional to the amount of memory swapped. 

 Modified versions of swapping are found on many systems, e.g., UNIX and 

Windows 95. 

 Schematic view of swapping 

 

Contiguous Allocation 



 Main memory usually into two partitions: 

o Resident operating system, often held in low memory with interrupt 

vector. 

o User processes then held in high memory. 

 Single-partition allocation 

o Relocation-register scheme used to protect user processes from each 

other, and from changing operating-system code and data. 

o Relocation register contains value of smallest physical address; limit 

register contains range of logical addresses - each logical address must 

be less than the limit register. 

 Multiple-partition allocation 

o Hole - block of available memory; holes of various size are scattered 

throughout memory. 

o When a process arrives, it is allocated memory from a hole large enough 

to accommodate it. 

 Example 

 

 

   

 

Operating system maintains information about: 

o allocated partitions 

o free partitions (holes) 

 Dynamic storage-allocation problem - how to satisfy a request of size n from a 

list of free holes. 

o First-fit: Allocate the first hole that is big enough. 

o Best-fit: Allocate the smallest hole that is big enough; must search entire 

list, unless ordered by size. Produces the smallest leftover hole. 

o Worst-fit: Allocate the largest hole; must also search entire list. Produces 

the largest leftover hole. 



 First-fit and best-fit better than worst-fit in terms of speed and storage 

utilization. 

 External fragmentation - total memory space exists to satisfy a request, but it is 

not contiguous. 

 Internal fragmentation - allocated memory may be slightly larger than 

requested memory; difference between these two numbers is memory internal 

to a partition, but not being used. 

 Reduce external fragmentation by compaction. 

o Shuffle memory contents to place all free memory together in one large 

block. 

o Compaction is possible only if relocation is dynamic, and is done at 

execution time. 

o I/O problem 

 Latch job in memory while it is involved in I/O. 

 Do I/O only into OS buffers. 

Paging - logical address space of a process can be 

noncontiguous; process is allocated physical memory 

wherever the latter is available. 

 Divide physical memory into fixed-sized blocks called frames (size is power of 

2, between 512 bytes and 8192 bytes). 

 Divide logical memory into blocks of same size called pages. 

 Keep track of all free frames. 

 To run a program of size n pages, need to find n free frames and load program. 

 Set up a page table to translate logical to physical addresses. 

 No external fragmentation but internal fragmentation. 

 Address generated by CPU is divided into: 

o Page number (p) - used as an index into a page table which contains base 

address of each page in physical memory. 

o Page offset (d) - combined with base address to define the physical 

memory address that is sent to the memory unit. 



 

 Separation between user's view of memory and actual physical memory 

reconciled by address translation hardware; logical addresses are translated into 

physical addresses. 

 



Implementation of page table 

 Page table is kept in main memory. 

 Page-table base register (PTBR) points to the page table. 

 Page-table length register (PTLR) indicates size of the page table. 

 In this scheme every data/instruction access requires two memory accesses. 

One for the page table and one for the data/instruction. 

 The two memory access problem can be solved by the use of a special fast-

lookup hardware cache called associative registers or translation look-aside 

buffers (TLBs). 

 Associative registers - parallel search 

 Page No | Frame No 

 ________|_________ 

|________|_________| 

|________|_________| 

|________|_________| 

|________|_________| 

Address translation (A', A'') 

o If A' in associative register, get frame number out. 

o Otherwise get frame number from page table in memory. 

 Hit ratio - percentage of times that a page number is found in the associative 

registers; ratio related to number of associative registers. 

 Effective Access Time (EAT) 

o associative lookup = e time units 

o memory cycle time = m time units 

o hit ratio = a 

EAT = (m + e) a+ (2m + e) (1 - a) = 2m + e - ma 

 Memory protection implemented by associating protection bits with each 

frame. 

 Valid-invalid bit attached to each entry in the page table: 

o ``valid'' indicates that the associated page is in the process' logical 

address space, and is thus a legal page. 

o ``invalid'' indicates that the page is not in the process' logical address 

space. 

 Write bit attached to each entry in the page table. 

o pages which have not been written may be shared between processes 

o do not need to be swapped - can be reloaded. 



Multilevel Paging - partitioning the page table allows the 

operating system to leave partitions unused until a process 

needs them. 

 A two-level page-table scheme 

 

 A logical address (on 32-bit machine with 4K page size) is divided into: 

o a page number consisting of 20 bits. 

o a page offset consisting of 12 bits. 

 Since the page table is paged, the page number is further divided into: 

o a 10-bit page number. 

o a 10-bit page offset. 

 Thus, a logical address is as follows: 



 

 

 

   

 

where p1 is an index into the outer page table, and p2 is the displacement within 

the page of the outer page table. 

 Address-translation scheme for a two-level 32-bit paging architecture 

 

 Multilevel paging and performance 

o Since each level is stored as a separate table in memory, converting a 

logical address to a physical one may take four memory accesses. 

o Even though time needed for one memory access is quintupled (4 level 

paging) , caching permits performance to remain reasonable. 

o Cache hit rate of 98 percent, memory access of 100ns, TLB lookup 20ns, 

4 level paging:  

 

 

effective access time = 0.98 x 120 + 0.02 x 520  

           = 128 nanoseconds  

 

which is only a 28 percent slowdown in memory access time. 



Inverted Page Table 

One entry for each real page of memory; entry consists of the virtual address of the 

page stored in that real memory location, with information about the process that 

owns that page. 

 Decreases memory needed to store each page table, but increases time needed 

to search the table when a page reference occurs. 

 Use hash table to limit the search to one - or at most a few - page-table entries. 

 

Shared pages 

 One copy of read-only (reentrant) code shared among processes (i.e., text 

editors, compilers, window systems). 



 

Segmentation - memory-management scheme that supports 

user view of memory. 

 A program is a collection of segments. A segment is a logical unit such as: 

code  

local variables  

global variables  

stack 

 Example 



 

 Logical address consists of a two tuple: 

<segment-number, offset> 

 A segment table maps two-dimensional user defined addresses into one-

dimensional physical addresses; each entry in the  table has: 

o base - contains the starting physical address where the segments reside in 

memory. 

o limit - specifies the length of the segment. 

 Segment-table base register (STBR) points to the segment table's location in 

memory. 

 Segment-table length register (STLR) indicates number of segments used by a 

program; 

segment number s is legal if s < STLR. 

Sharing 

 shared segments 

 same segment number 

Protection 

With each entry in segment table associate: 



 validation bit = 0 -> illegal segment 

 read/write/execute privileges 

Allocation 

 first fit/best fit 

 external fragmentation 

 Protection bits associated with segments; code sharing occurs at segment level. 

 Since segments vary in length, memory allocation is a dynamic storage-

allocation problem. 

 

Segmentation with Paging 

 The Intel Pentium uses segmentation with paging for memory management, 

with a two-level paging scheme. 



 

Considerations in comparing memory-management 

strategies: 

 Hardware support 

 Performance 

 Fragmentation 

 Relocation 

 Swapping 

 Sharing 

 Protection 

 

 

 



Virtual Memory 

9.1 Background 

 Preceding sections talked about how to avoid memory fragmentation by 
breaking process memory requirements down into smaller bites ( pages ), and 
storing the pages non-contiguously in memory. However the entire process 
still had to be stored in memory somewhere. 

 In practice, most real processes do not need all their pages, or at least not all 
at once, for several reasons: 

1. Error handling code is not needed unless that specific error occurs, 
some of which are quite rare. 

2. Arrays are often over-sized for worst-case scenarios, and only a small 
fraction of the arrays are actually used in practice. 

3. Certain features of certain programs are rarely used, such as the routine 
to balance the federal budget. :-) 

 The ability to load only the portions of processes that were actually needed ( 
and only when they were needed ) has several benefits: 

o Programs could be written for a much larger address space ( virtual 
memory space ) than physically exists on the computer. 

o Because each process is only using a fraction of their total address 
space, there is more memory left for other programs, improving CPU 
utilization and system throughput. 

o Less I/O is needed for swapping processes in and out of RAM, speeding 
things up. 

Figure 9.1 shows the general layout of virtual memory, which can be much larger 
than physical memory: 

 Figure 9.2 shows virtual address space, which is the programmers logical view 

of process memory storage. The actual physical layout is controlled by the 

process's page table. 

 Note that the address space shown in Figure 9.2 is sparse - A great hole in the 

middle of the address space is never used, unless the stack and/or the heap 

grow to fill the hole. 



 
Figure 9.2 - Virtual address space 

 Virtual memory also allows the sharing of files and memory by multiple 

processes, with several benefits: 

o System libraries can be shared by mapping them into the virtual address 

space of more than one process. 

o Processes can also share virtual memory by mapping the same block of 

memory to more than one process. 

o Process pages can be shared during a fork( ) system call, eliminating the 

need to copy all of the pages of the original ( parent ) process. 



Demand Paging 

 The basic idea behind demand paging is that when a process is swapped in, its pages are not 
swapped in all at once. Rather they are swapped in only when the process needs them. ( on 
demand. ) This is termed a lazy swapper, although a pager is a more accurate term. 

 
Figure 9.4 - Transfer of a paged memory to contiguous disk space 

9.2.1 Basic Concepts 

 The basic idea behind paging is that when a process is swapped in, the pager only loads into 
memory those pages that it expects the process to need ( right away. ) 

 Pages that are not loaded into memory are marked as invalid in the page table, using the invalid 
bit. ( The rest of the page table entry may either be blank or contain information about where to 
find the swapped-out page on the hard drive. ) 

 If the process only ever accesses pages that are loaded in memory ( memory resident pages ), 
then the process runs exactly as if all the pages were loaded in to memory. 



 
Figure 9.5 - Page table when some pages are not in main memory. 

 On the other hand, if a page is needed that was not originally loaded up, then a page fault 
trap is generated, which must be handled in a series of steps: 

1. The memory address requested is first checked, to make sure it was a valid memory 
request. 

2. If the reference was invalid, the process is terminated. Otherwise, the page must be 
paged in. 

3. A free frame is located, possibly from a free-frame list. 



4. A disk operation is scheduled to bring in the necessary page from disk. ( This will usually 
block the process on an I/O wait, allowing some other process to use the CPU in the 
meantime. ) 

5. When the I/O operation is complete, the process's page table is updated with the new 
frame number, and the invalid bit is changed to indicate that this is now a valid page 
reference. 

6. The instruction that caused the page fault must now be restarted from the beginning, ( 
as soon as this process gets another turn on the CPU. ) 

 
Figure 9.6 - Steps in handling a page fault 

 In an extreme case, NO pages are swapped in for a process until they are requested by page 
faults. This is known as pure demand paging. 



 In theory each instruction could generate multiple page faults. In practice this is very rare, due 
to locality of reference, covered in section 9.6.1. 

 The hardware necessary to support virtual memory is the same as for paging and swapping: A 
page table and secondary memory. ( Swap space, whose allocation is discussed in chapter 12. ) 

 A crucial part of the process is that the instruction must be restarted from scratch once the 
desired page has been made available in memory. For most simple instructions this is not a 
major difficulty. However there are some architectures that allow a single instruction to modify 
a fairly large block of data, ( which may span a page boundary ), and if some of the data gets 
modified before the page fault occurs, this could cause problems. One solution is to access both 
ends of the block before executing the instruction, guaranteeing that the necessary pages get 
paged in before the instruction begins. 

9.2.2 Performance of Demand Paging 

 Obviously there is some slowdown and performance hit whenever a page fault occurs and the 
system has to go get it from memory, but just how big a hit is it exactly? 

 There are many steps that occur when servicing a page fault ( see book for full details ), and 
some of the steps are optional or variable. But just for the sake of discussion, suppose that a 
normal memory access requires 200 nanoseconds, and that servicing a page fault takes 8 
milliseconds. ( 8,000,000 nanoseconds, or 40,000 times a normal memory access. ) With a page 
fault rate of p, ( on a scale from 0 to 1 ), the effective access time is now: 

( 1 - p ) * ( 200 ) + p * 8000000 

= 200 + 7,999,800 * p 

which clearly depends heavily on p! Even if only one access in 1000 causes a page fault, the 

effective access time drops from 200 nanoseconds to 8.2 microseconds, a slowdown of a factor 

of 40 times. In order to keep the slowdown less than 10%, the page fault rate must be less than 

0.0000025, or one in 399,990 accesses. 

 A subtlety is that swap space is faster to access than the regular file system, because it does not 
have to go through the whole directory structure. For this reason some systems will transfer an 
entire process from the file system to swap space before starting up the process, so that future 
paging all occurs from the ( relatively ) faster swap space. 

 Some systems use demand paging directly from the file system for binary code ( which never 
changes and hence does not have to be stored on a page operation ), and to reserve the swap 
space for data segments that must be stored. This approach is used by both Solaris and BSD 
Unix. 

9.3 Copy-on-Write 

 The idea behind a copy-on-write fork is that the pages for a parent process do not have to be 
actually copied for the child until one or the other of the processes changes the page. They can 
be simply shared between the two processes in the meantime, with a bit set that the page 
needs to be copied if it ever gets written to. This is a reasonable approach, since the child 
process usually issues an exec( ) system call immediately after the fork. 



 
Figure 9.7 - Before process 1 modifies page C. 

 
Figure 9.8 - After process 1 modifies page C. 

 Obviously only pages that can be modified even need to be labeled as copy-on-write. Code 
segments can simply be shared. 

 Pages used to satisfy copy-on-write duplications are typically allocated using zero-fill-on-
demand, meaning that their previous contents are zeroed out before the copy proceeds. 

 Some systems provide an alternative to the fork( ) system call called a virtual memory fork, 
vfork( ). In this case the parent is suspended, and the child uses the parent's memory pages. This 
is very fast for process creation, but requires that the child not modify any of the shared 



memory pages before performing the exec( ) system call. ( In essence this addresses the 
question of which process executes first after a call to fork, the parent or the child. With vfork, 
the parent is suspended, allowing the child to execute first until it calls exec( ), sharing pages 
with the parent in the meantime. 

9.4 Page Replacement 

 In order to make the most use of virtual memory, we load several processes into memory at the 
same time. Since we only load the pages that are actually needed by each process at any given 
time, there is room to load many more processes than if we had to load in the entire process. 

 However memory is also needed for other purposes ( such as I/O buffering ), and what happens 
if some process suddenly decides it needs more pages and there aren't any free frames 
available? There are several possible solutions to consider: 

1. Adjust the memory used by I/O buffering, etc., to free up some frames for user 
processes. The decision of how to allocate memory for I/O versus user processes is a 
complex one, yielding different policies on different systems. ( Some allocate a fixed 
amount for I/O, and others let the I/O system contend for memory along with 
everything else. ) 

2. Put the process requesting more pages into a wait queue until some free frames 
become available. 

3. Swap some process out of memory completely, freeing up its page frames. 
4. Find some page in memory that isn't being used right now, and swap that page only out 

to disk, freeing up a frame that can be allocated to the process requesting it. This is 
known as page replacement, and is the most common solution. There are many 
different algorithms for page replacement, which is the subject of the remainder of this 
section. 



 
Figure 9.9 - Ned for page replacement. 

9.4.1 Basic Page Replacement 

 The previously discussed page-fault processing assumed that there would be 
free frames available on the free-frame list. Now the page-fault handling must 
be modified to free up a frame if necessary, as follows: 

1. Find the location of the desired page on the disk, either in swap space 
or in the file system. 

2. Find a free frame: 
a. If there is a free frame, use it. 
b. If there is no free frame, use a page-replacement algorithm to 

select an existing frame to be replaced, known as the victim 
frame. 



c. Write the victim frame to disk. Change all related page tables to 
indicate that this page is no longer in memory. 

3. Read in the desired page and store it in the frame. Adjust all related 
page and frame tables to indicate the change. 

4. Restart the process that was waiting for this page. 

 
Figure 9.10 - Page replacement. 

 Note that step 3c adds an extra disk write to the page-fault handling, 
effectively doubling the time required to process a page fault. This can be 
alleviated somewhat by assigning a modify bit, or dirty bit to each page, 
indicating whether or not it has been changed since it was last loaded in from 
disk. If the dirty bit has not been set, then the page is unchanged, and does 
not need to be written out to disk. Otherwise the page write is required. It 
should come as no surprise that many page replacement strategies specifically 



look for pages that do not have their dirty bit set, and preferentially select 
clean pages as victim pages. It should also be obvious that unmodifiable code 
pages never get their dirty bits set. 

 There are two major requirements to implement a successful demand paging 
system. We must develop a frame-allocation algorithm and a page-
replacement algorithm. The former centers around how many frames are 
allocated to each process ( and to other needs ), and the latter deals with how 
to select a page for replacement when there are no free frames available. 

 The overall goal in selecting and tuning these algorithms is to generate the 
fewest number of overall page faults. Because disk access is so slow relative to 
memory access, even slight improvements to these algorithms can yield large 
improvements in overall system performance. 

 Algorithms are evaluated using a given string of memory accesses known as 
a reference string, which can be generated in one of ( at least ) three common 
ways: 

1. Randomly generated, either evenly distributed or with some 
distribution curve based on observed system behavior. This is the 
fastest and easiest approach, but may not reflect real performance well, 
as it ignores locality of reference. 

2. Specifically designed sequences. These are useful for illustrating the 
properties of comparative algorithms in published papers and 
textbooks, ( and also for homework and exam problems. :-) ) 

3. Recorded memory references from a live system. This may be the best 
approach, but the amount of data collected can be enormous, on the 
order of a million addresses per second. The volume of collected data 
can be reduced by making two important observations: 

1. Only the page number that was accessed is relevant. The offset 
within that page does not affect paging operations. 

2. Successive accesses within the same page can be treated as a 
single page request, because all requests after the first are 
guaranteed to be page hits. ( Since there are no intervening 
requests for other pages that could remove this page from the 
page table. ) 

 So for example, if pages were of size 100 bytes, then the 
sequence of address requests ( 0100, 0432, 0101, 0612, 0634, 
0688, 0132, 0038, 0420 ) would reduce to page requests ( 1, 4, 1, 
6, 1, 0, 4 ) 

As the number of available frames increases, the number of page faults should 
decrease, as shown in Figure 9.11: 



 
Figure 9.11 - Graph of page faults versus number of frames. 

9.4.2 FIFO Page Replacement 

 A simple and obvious page replacement strategy is FIFO, i.e. first-in-first-out. 
 As new pages are brought in, they are added to the tail of a queue, and the 

page at the head of the queue is the next victim. In the following example, 20 
page requests result in 15 page faults: 

 
Figure 9.12 - FIFO page-replacement algorithm. 



 Although FIFO is simple and easy, it is not always optimal, or even efficient. 
 An interesting effect that can occur with FIFO is Belady's anomaly, in which 

increasing the number of frames available can actually increase the number of 
page faults that occur! Consider, for example, the following chart based on the 
page sequence ( 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 ) and a varying number of 
available frames. Obviously the maximum number of faults is 12 ( every 
request generates a fault ), and the minimum number is 5 ( each page loaded 
only once ), but in between there are some interesting results: 

 
Figure 9.13 - Page-fault curve for FIFO replacement on a reference string. 

9.4.3 Optimal Page Replacement 

 The discovery of Belady's anomaly lead to the search for an optimal page-
replacement algorithm, which is simply that which yields the lowest of all 
possible page-faults, and which does not suffer from Belady's anomaly. 

 Such an algorithm does exist, and is called OPT or MIN. This algorithm is 
simply "Replace the page that will not be used for the longest time in the 
future." 

 For example, Figure 9.14 shows that by applying OPT to the same reference 
string used for the FIFO example, the minimum number of possible page faults 



is 9. Since 6 of the page-faults are unavoidable ( the first reference to each 
new page ), FIFO can be shown to require 3 times as many ( extra ) page faults 
as the optimal algorithm. ( Note: The book claims that only the first three page 
faults are required by all algorithms, indicating that FIFO is only twice as bad 
as OPT. ) 

 Unfortunately OPT cannot be implemented in practice, because it requires 
foretelling the future, but it makes a nice benchmark for the comparison and 
evaluation of real proposed new algorithms. 

 In practice most page-replacement algorithms try to approximate OPT by 
predicting ( estimating ) in one fashion or another what page will not be used 
for the longest period of time. The basis of FIFO is the prediction that the page 
that was brought in the longest time ago is the one that will not be needed 
again for the longest future time, but as we shall see, there are many other 
prediction methods, all striving to match the performance of OPT. 

 
Figure 9.14 - Optimal page-replacement algorithm 

9.4.4 LRU Page Replacement 

 The prediction behind LRU, the Least Recently Used, algorithm is that the 
page that has not been used in the longest time is the one that will not be 
used again in the near future. ( Note the distinction between FIFO and LRU: 
The former looks at the oldest load time, and the latter looks at the 
oldest use time. ) 

 Some view LRU as analogous to OPT, except looking backwards in time instead 
of forwards. ( OPT has the interesting property that for any reference string S 
and its reverse R, OPT will generate the same number of page faults for S and 
for R. It turns out that LRU has this same property. ) 



 Figure 9.15 illustrates LRU for our sample string, yielding 12 page faults, ( as 
compared to 15 for FIFO and 9 for OPT. ) 

 
Figure 9.15 - LRU page-replacement algorithm. 

 LRU is considered a good replacement policy, and is often used. The problem 
is how exactly to implement it. There are two simple approaches commonly 
used: 

1. Counters. Every memory access increments a counter, and the current 
value of this counter is stored in the page table entry for that page. 
Then finding the LRU page involves simple searching the table for the 
page with the smallest counter value. Note that overflowing of the 
counter must be considered. 

2. Stack. Another approach is to use a stack, and whenever a page is 
accessed, pull that page from the middle of the stack and place it on the 
top. The LRU page will always be at the bottom of the stack. Because 
this requires removing objects from the middle of the stack, a doubly 
linked list is the recommended data structure. 

 Note that both implementations of LRU require hardware support, either for 
incrementing the counter or for managing the stack, as these operations must 
be performed for every memory access. 

 Neither LRU or OPT exhibit Belady's anomaly. Both belong to a class of page-
replacement algorithms called stack algorithms, which can never exhibit 
Belady's anomaly. A stack algorithm is one in which the pages kept in memory 
for a frame set of size N will always be a subset of the pages kept for a frame 
size of N + 1. In the case of LRU, ( and particularly the stack implementation 
thereof ), the top N pages of the stack will be the same for all frame set sizes 
of N or anything larger. 



 
Figure 9.16 - Use of a stack to record the most recent page references. 

9.4.5 LRU-Approximation Page Replacement 

 Unfortunately full implementation of LRU requires hardware support, and few 
systems provide the full hardware support necessary. 

 However many systems offer some degree of HW support, enough to 
approximate LRU fairly well. ( In the absence of ANY hardware support, FIFO 
might be the best available choice. ) 

 In particular, many systems provide a reference bit for every entry in a page 
table, which is set anytime that page is accessed. Initially all bits are set to 
zero, and they can also all be cleared at any time. One bit of precision is 
enough to distinguish pages that have been accessed since the last clear from 
those that have not, but does not provide any finer grain of detail. 

9.4.5.1 Additional-Reference-Bits Algorithm 

 Finer grain is possible by storing the most recent 8 reference bits for each 
page in an 8-bit byte in the page table entry, which is interpreted as an 
unsigned int. 

o At periodic intervals ( clock interrupts ), the OS takes over, and right-
shifts each of the reference bytes by one bit. 

o The high-order ( leftmost ) bit is then filled in with the current value of 
the reference bit, and the reference bits are cleared. 



o At any given time, the page with the smallest value for the reference 
byte is the LRU page. 

 Obviously the specific number of bits used and the frequency with which the 
reference byte is updated are adjustable, and are tuned to give the fastest 
performance on a given hardware platform. 

9.4.5.2 Second-Chance Algorithm 

 The second chance algorithm is essentially a FIFO, except the reference bit is 
used to give pages a second chance at staying in the page table. 

o When a page must be replaced, the page table is scanned in a FIFO 
( circular queue ) manner. 

o If a page is found with its reference bit not set, then that page is 
selected as the next victim. 

o If, however, the next page in the FIFO does have its reference bit set, 
then it is given a second chance: 

 The reference bit is cleared, and the FIFO search continues. 
 If some other page is found that did not have its reference bit 

set, then that page will be selected as the victim, and this page 
( the one being given the second chance ) will be allowed to stay 
in the page table. 

 If , however, there are no other pages that do not have their 
reference bit set, then this page will be selected as the victim 
when the FIFO search circles back around to this page on the 
second pass. 

 If all reference bits in the table are set, then second chance degrades to FIFO, 
but also requires a complete search of the table for every page-replacement. 

 As long as there are some pages whose reference bits are not set, then any 
page referenced frequently enough gets to stay in the page table indefinitely. 

 This algorithm is also known as the clock algorithm, from the hands of the 
clock moving around the circular queue. 



 
Figure 9.17 - Second-chance ( clock ) page-replacement algorithm. 

9.4.5.3 Enhanced Second-Chance Algorithm 

 The enhanced second chance algorithm looks at the reference bit and the 
modify bit ( dirty bit ) as an ordered page, and classifies pages into one of four 
classes: 

1. ( 0, 0 ) - Neither recently used nor modified. 
2. ( 0, 1 ) - Not recently used, but modified. 
3. ( 1, 0 ) - Recently used, but clean. 



4. ( 1, 1 ) - Recently used and modified. 
 This algorithm searches the page table in a circular fashion ( in as many as four 

passes ), looking for the first page it can find in the lowest numbered category. 
I.e. it first makes a pass looking for a ( 0, 0 ), and then if it can't find one, it 
makes another pass looking for a ( 0, 1 ), etc. 

 The main difference between this algorithm and the previous one is the 
preference for replacing clean pages if possible. 

9.4.6 Counting-Based Page Replacement 

 There are several algorithms based on counting the number of references that 
have been made to a given page, such as: 

o Least Frequently Used, LFU: Replace the page with the lowest 
reference count. A problem can occur if a page is used frequently 
initially and then not used any more, as the reference count remains 
high. A solution to this problem is to right-shift the counters 
periodically, yielding a time-decaying average reference count. 

o Most Frequently Used, MFU: Replace the page with the highest 
reference count. The logic behind this idea is that pages that have 
already been referenced a lot have been in the system a long time, and 
we are probably done with them, whereas pages referenced only a few 
times have only recently been loaded, and we still need them. 

 In general counting-based algorithms are not commonly used, as their 
implementation is expensive and they do not approximate OPT well. 

9.4.7 Page-Buffering Algorithms 

There are a number of page-buffering algorithms that can be used in conjunction with 

the afore-mentioned algorithms, to improve overall performance and sometimes make 

up for inherent weaknesses in the hardware and/or the underlying page-replacement 

algorithms: 

 Maintain a certain minimum number of free frames at all times. When a page-
fault occurs, go ahead and allocate one of the free frames from the free list 
first, to get the requesting process up and running again as quickly as possible, 
and then select a victim page to write to disk and free up a frame as a second 
step. 

 Keep a list of modified pages, and when the I/O system is otherwise idle, have 
it write these pages out to disk, and then clear the modify bits, thereby 
increasing the chance of finding a "clean" page for the next potential victim. 



 Keep a pool of free frames, but remember what page was in it before it was 
made free. Since the data in the page is not actually cleared out when the 
page is freed, it can be made an active page again without having to load in 
any new data from disk. This is useful when an algorithm mistakenly replaces a 
page that in fact is needed again soon. 

9.4.8 Applications and Page Replacement 

 Some applications ( most notably database programs ) understand their data 
accessing and caching needs better than the general-purpose OS, and should 
therefore be given reign to do their own memory management. 

 Sometimes such programs are given a raw disk partition to work with, 
containing raw data blocks and no file system structure. It is then up to the 
application to use this disk partition as extended memory or for whatever 
other reasons it sees fit. 

9.5 Allocation of Frames 

We said earlier that there were two important tasks in virtual memory management: a 

page-replacement strategy and a frame-allocation strategy. This section covers the 

second part of that pair. 

9.5.1 Minimum Number of Frames 

 The absolute minimum number of frames that a process must be allocated is 
dependent on system architecture, and corresponds to the worst-case 
scenario of the number of pages that could be touched by a single ( machine ) 
instruction. 

 If an instruction ( and its operands ) spans a page boundary, then multiple 
pages could be needed just for the instruction fetch. 

 Memory references in an instruction touch more pages, and if those memory 
locations can span page boundaries, then multiple pages could be needed for 
operand access also. 

 The worst case involves indirect addressing, particularly where multiple levels 
of indirect addressing are allowed. Left unchecked, a pointer to a pointer to a 
pointer to a pointer to a . . . could theoretically touch every page in the virtual 
address space in a single machine instruction, requiring every virtual page be 
loaded into physical memory simultaneously. For this reason architectures 
place a limit ( say 16 ) on the number of levels of indirection allowed in an 
instruction, which is enforced with a counter initialized to the limit and 



decremented with every level of indirection in an instruction - If the counter 
reaches zero, then an "excessive indirection" trap occurs. This example would 
still require a minimum frame allocation of 17 per process. 

9.5.2 Allocation Algorithms 

 Equal Allocation - If there are m frames available and n processes to share 
them, each process gets m / n frames, and the leftovers are kept in a free-
frame buffer pool. 

 Proportional Allocation - Allocate the frames proportionally to the size of the 
process, relative to the total size of all processes. So if the size of process i is 
S_i, and S is the sum of all S_i, then the allocation for process P_i is a_i = m * 
S_i / S. 

 Variations on proportional allocation could consider priority of process rather 
than just their size. 

 Obviously all allocations fluctuate over time as the number of available free 
frames, m, fluctuates, and all are also subject to the constraints of minimum 
allocation. ( If the minimum allocations cannot be met, then processes must 
either be swapped out or not allowed to start until more free frames become 
available. ) 

9.5.3 Global versus Local Allocation 

 One big question is whether frame allocation ( page replacement ) occurs on a 
local or global level. 

 With local replacement, the number of pages allocated to a process is fixed, 
and page replacement occurs only amongst the pages allocated to this 
process. 

 With global replacement, any page may be a potential victim, whether it 
currently belongs to the process seeking a free frame or not. 

 Local page replacement allows processes to better control their own page 
fault rates, and leads to more consistent performance of a given process over 
different system load levels. 

 Global page replacement is overall more efficient, and is the more commonly 
used approach. 

9.5.4 Non-Uniform Memory Access 

 The above arguments all assume that all memory is equivalent, or at least has 
equivalent access times. 



 This may not be the case in multiple-processor systems, especially where each 
CPU is physically located on a separate circuit board which also holds some 
portion of the overall system memory. 

 In these latter systems, CPUs can access memory that is physically located on 
the same board much faster than the memory on the other boards. 

 The basic solution is akin to processor affinity - At the same time that we try to 
schedule processes on the same CPU to minimize cache misses, we also try to 
allocate memory for those processes on the same boards, to minimize access 
times. 

 The presence of threads complicates the picture, especially when the threads 
get loaded onto different processors. 

 Solaris uses an lgroup as a solution, in a hierarchical fashion based on relative 
latency. For example, all processors and RAM on a single board would 
probably be in the same lgroup. Memory assignments are made within the 
same lgroup if possible, or to the next nearest lgroup otherwise. ( Where 
"nearest" is defined as having the lowest access time. ) 

9.6 Thrashing 

 If a process cannot maintain its minimum required number of frames, then it 
must be swapped out, freeing up frames for other processes. This is an 
intermediate level of CPU scheduling. 

 But what about a process that can keep its minimum, but cannot keep all of 
the frames that it is currently using on a regular basis? In this case it is forced 
to page out pages that it will need again in the very near future, leading to 
large numbers of page faults. 

 A process that is spending more time paging than executing is said to 
be thrashing. 

9.6.1 Cause of Thrashing 

 Early process scheduling schemes would control the level of 
multiprogramming allowed based on CPU utilization, adding in more 
processes when CPU utilization was low. 

 The problem is that when memory filled up and processes started spending 
lots of time waiting for their pages to page in, then CPU utilization would 
lower, causing the schedule to add in even more processes and exacerbating 
the problem! Eventually the system would essentially grind to a halt. 

 Local page replacement policies can prevent one thrashing process from 
taking pages away from other processes, but it still tends to clog up the I/O 



queue, thereby slowing down any other process that needs to do even a little 
bit of paging ( or any other I/O for that matter. ) 

 
Figure 9.18 - Thrashing 

 To prevent thrashing we must provide processes with as many frames as they 
really need "right now", but how do we know what that is? 

 The locality model notes that processes typically access memory references in 
a given locality, making lots of references to the same general area of memory 
before moving periodically to a new locality, as shown in Figure 9.19 below. If 
we could just keep as many frames as are involved in the current locality, then 
page faulting would occur primarily on switches from one locality to another. 

9.6.2 Working-Set Model 

 The working set model is based on the concept of locality, and defines a working set 
window, of length delta. Whatever pages are included in the most recent delta page references 
are said to be in the processes working set window, and comprise its current working set, as 
illustrated in Figure 9.20: 



 
Figure 9.20 - Working-set model. 

 The selection of delta is critical to the success of the working set model - If it is too small then it 
does not encompass all of the pages of the current locality, and if it is too large, then it 
encompasses pages that are no longer being frequently accessed. 

 The total demand, D, is the sum of the sizes of the working sets for all processes. If D exceeds 
the total number of available frames, then at least one process is thrashing, because there are 
not enough frames available to satisfy its minimum working set. If D is significantly less than the 
currently available frames, then additional processes can be launched. 

 The hard part of the working-set model is keeping track of what pages are in the current 
working set, since every reference adds one to the set and removes one older page. An 
approximation can be made using reference bits and a timer that goes off after a set interval of 
memory references: 

o For example, suppose that we set the timer to go off after every 5000 references ( by 
any process ), and we can store two additional historical reference bits in addition to the 
current reference bit. 

o Every time the timer goes off, the current reference bit is copied to one of the two 
historical bits, and then cleared. 

o If any of the three bits is set, then that page was referenced within the last 15,000 
references, and is considered to be in that processes reference set. 

o Finer resolution can be achieved with more historical bits and a more frequent timer, at 
the expense of greater overhead. 

9.6.3 Page-Fault Frequency 

 A more direct approach is to recognize that what we really want to control is the page-fault rate, 
and to allocate frames based on this directly measurable value. If the page-fault rate exceeds a 
certain upper bound then that process needs more frames, and if it is below a given lower 
bound, then it can afford to give up some of its frames to other processes. 

 ( I suppose a page-replacement strategy could be devised that would select victim frames based 
on the process with the lowest current page-fault frequency. ) 



 
Figure 9.21 - Page-fault frequency. 

 Note that there is a direct relationship between the page-fault rate and the working-set, as a 
process moves from one locality to another: 
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9.7 Memory-Mapped Files 

 Rather than accessing data files directly via the file system with every file access, data files can 
be paged into memory the same as process files, resulting in much faster accesses ( except of 
course when page-faults occur. ) This is known as memory-mapping a file. 

9.7.1 Basic Mechanism 

 Basically a file is mapped to an address range within a process's virtual address space, and then 
paged in as needed using the ordinary demand paging system. 

 Note that file writes are made to the memory page frames, and are not immediately written out 
to disk. ( This is the purpose of the "flush( )" system call, which may also be needed for stdout in 
some cases. See the timekiller program for an example of this. ) 

 This is also why it is important to "close( )" a file when one is done writing to it - So that the data 
can be safely flushed out to disk and so that the memory frames can be freed up for other 
purposes. 

 Some systems provide special system calls to memory map files and use direct disk access 
otherwise. Other systems map the file to process address space if the special system calls are 
used and map the file to kernel address space otherwise, but do memory mapping in either 
case. 

 File sharing is made possible by mapping the same file to the address space of more than one 
process, as shown in Figure 9.23 below. Copy-on-write is supported, and mutual exclusion 
techniques ( chapter 6 ) may be needed to avoid synchronization problems. 

https://www.cs.uic.edu/~jbell/CourseNotes/timeKiller.html


 
Figure 9.22 Memory-mapped files. 

 Shared memory can be implemented via shared memory-mapped files ( Windows ), or it can be 
implemented through a separate process ( Linux, UNIX. ) 

9.7.2 Shared Memory in the Win32 API 

 Windows implements shared memory using shared memory-mapped files, involving three basic 
steps: 

1. Create a file, producing a HANDLE to the new file. 
2. Name the file as a shared object, producing a HANDLE to the shared object. 
3. Map the shared object to virtual memory address space, returning its base address as a 

void pointer ( LPVOID ). 
 This is illustrated in Figures 9.24 to 9.26 ( annotated. ) 



 
Figure 9.23 - Shared memory in Windows using memory-mapped I/O. 



 



Figure 9.24 

 
Figure 9.25 

9.7.3 Memory-Mapped I/O 

 All access to devices is done by writing into ( or reading from ) the device's registers. Normally 
this is done via special I/O instructions. 



 For certain devices it makes sense to simply map the device's registers to addresses in the 
process's virtual address space, making device I/O as fast and simple as any other memory 
access. Video controller cards are a classic example of this. 

 Serial and parallel devices can also use memory mapped I/O, mapping the device registers to 
specific memory addresses known as I/O Ports, e.g. 0xF8. Transferring a series of bytes must be 
done one at a time, moving only as fast as the I/O device is prepared to process the data, 
through one of two mechanisms: 

o Programmed I/O ( PIO ), also known as polling. The CPU periodically checks the control 
bit on the device, to see if it is ready to handle another byte of data. 

o Interrupt Driven. The device generates an interrupt when it either has another byte of 
data to deliver or is ready to receive another byte. 

9.8 Allocating Kernel Memory 

 Previous discussions have centered on process memory, which can be conveniently broken up 
into page-sized chunks, and the only fragmentation that occurs is the average half-page lost to 
internal fragmentation for each process ( segment. ) 

 There is also additional memory allocated to the kernel, however, which cannot be so easily 
paged. Some of it is used for I/O buffering and direct access by devices, example, and must 
therefore be contiguous and not affected by paging. Other memory is used for internal kernel 
data structures of various sizes, and since kernel memory is often locked ( restricted from being 
ever swapped out ), management of this resource must be done carefully to avoid internal 
fragmentation or other waste. ( I.e. you would like the kernel to consume as little memory as 
possible, leaving as much as possible for user processes. ) Accordingly there are several classic 
algorithms in place for allocating kernel memory structures. 

9.8.1 Buddy System 

 The Buddy System allocates memory using a power of two allocator. 
 Under this scheme, memory is always allocated as a power of 2 ( 4K, 8K, 16K, 

etc ), rounding up to the next nearest power of two if necessary. 
 If a block of the correct size is not currently available, then one is formed by 

splitting the next larger block in two, forming two matched buddies. ( And if 
that larger size is not available, then the next largest available size is split, and 
so on. ) 

 One nice feature of the buddy system is that if the address of a block is 
exclusively ORed with the size of the block, the resulting address is the 
address of the buddy of the same size, which allows for fast and 
easy coalescing of free blocks back into larger blocks. 

o Free lists are maintained for every size block. 
o If the necessary block size is not available upon request, a free block 

from the next largest size is split into two buddies of the desired size. 
( Recursively splitting larger size blocks if necessary. ) 



o When a block is freed, its buddy's address is calculated, and the free list 
for that size block is checked to see if the buddy is also free. If it is, then 
the two buddies are coalesced into one larger free block, and the 
process is repeated with successively larger free lists. 

o See the ( annotated ) Figure 9.27 below for an example. 

9.8.2 Slab Allocation 

 Slab Allocation allocates memory to the kernel in chunks called slabs, 
consisting of one or more contiguous pages. The kernel then creates separate 
caches for each type of data structure it might need from one or more slabs. 
Initially the caches are marked empty, and are marked full as they are used. 

 New requests for space in the cache is first granted from empty or partially 
empty slabs, and if all slabs are full, then additional slabs are allocated. 

 ( This essentially amounts to allocating space for arrays of structures, in large 
chunks suitable to the size of the structure being stored. For example if a 
particular structure were 512 bytes long, space for them would be allocated in 
groups of 8 using 4K pages. If the structure were 3K, then space for 4 of them 
could be allocated at one time in a slab of 12K using three 4K pages. 

 Benefits of slab allocation include lack of internal fragmentation and fast 
allocation of space for individual structures 

 Solaris uses slab allocation for the kernel and also for certain user-mode 
memory allocations. Linux used the buddy system prior to 2.2 and switched to 
slab allocation since then. 

 New in 9th Edition: Linux SLOB and SLUB allocators replace SLAB 
o SLOB, Simple List of Blocks, maintains 3 linked lists of free blocks - small, 

medium, and large - designed for ( imbedded ) systems with limited 
amounts of memory. 

o SLUB modifies some implementation issues for better performance on 
systems with large numbers of processors. 
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